METHODS TO DETERMINE COXETERPOLYNOMIALS

AXEL BOLDT

ABsTRACT. A reduction formula for the characteristic polynomials ¢4 of the Cox-
etermatrices of certain split finite-dimensional algebras A 1s proved. In the heredi-
tary case, this yields explicit expressions for the Coxeterpolynomials of large families
of quivers. Moreover, a combinatorial interpretation of the entries of the Coxeter-
matrices of path algebras gives formulas for Coxeterpolynomials of some quivers
which cannot be treated by the above mentioned reduction process.

1. INTRODUCTION

The purpose of this paper is to establish a reduction formula for the characteristic
polynomial ¢, of the Coxetermatrix of a split finite-dimensional algebra A. In fact,
when A is put together from subalgebras in a certain natural fashion, we express ¢,
in terms of the Coxeterpolynomials of these subalgebras. In concrete computations,
repeated application of this reduction principle offers a significant edge over direct use
of the definition. In the hereditary case, in particular, this principle yields explicit
expressions for the Coxeterpolynomials of large families of quivers. Moreover, a
combinatorial interpretation of the entries of the Coxetermatrices of hereditary path
algebras allows us to establish formulas for Coxeterpolynomials of some quivers which
cannot be treated by the above mentioned reduction process.

The significance of the Coxetermatrix ®, and the Coxeterpolynomial ¢, of a finite-
dimensional algebra A lies in the following observation [4]: Namely, if A has finite
global dimension, then the derived category D”(A) has Auslander-Reiten triangles,
and the resulting Auslander-Reiten translation yields an endomorphism with matrix
®, on the level of the Grothendieck group Go(D?(A)) = Go(A). As a consequence,
the Coxeterpolynomial ¢, — its zeroset, in particular — contains valuable information
on the growth behaviour of iterated Auslander-Reiten translates.

Throughout, I' will be a finite quiver with vertex set VI' and A = KT'/I will be a
path algebra modulo an ideal of relations over a field K such that dimg A < oo (see
e. g. [5], sec. 2.1, for the definitions, but note that we compose paths like maps: if p
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is path from 7 to 57 and ¢ is a path from j to k, then ¢p denotes the composite path
from ¢ to k). We will denote the primitive idempotent of A corresponding to i € VI’
with e;. Recall that the VI' x VI’ matrix

Cy = (dimg e;Ae;)(,jevrxvr

is called the Cartan matrix of A and that, in case |Cy| = det(Cy) # 0 (which is
always satisfied if A has finite global dimension), the Coxetermatrix of A is defined
as

¢, = —C,CLY,

where *C'y denotes the transpose of the matrix Cy. We will study the Coxeterpoly-
nomial ¢ (T) = |TE — ®4| of A.

Our main result deals with the situation where A = KT'/I, and T' is the union
of two quivers I'y and I'y which share only a single vertex r such that [ can be
generated by relations which involve no paths properly passing through r. If A;,
resp. A;, denotes the algebra obtained from KT}, resp. K(I';\ {r}), by factoring out
the obvious contraction of I, we obtain

Pp = ¢A1¢[\2 + ¢[\1¢A2 —(I'+ 1)¢[\1 </5[\27
whenever |Cy| # 0.

Based on this equation, we have developed a program using the computer algebra
system ‘Maple’; which is capable ol symbolically generating formulas [or the Cox-
eterpolynomials of large classes of path algebras, as well as of efficiently computing
Coxeterpolynomials of concretely given path algebras. The detailed discussion of this
program and its complexity is contained in [2]. The program is called ‘coxpoly” and
is freely available [3].

2. THE MAIN RESULT

Let r be a vertex of the quiver I' and p a path in I'. We say that p properly passes
through r, if p can be written in the form p = pye,p; with paths py, p, in I' of length
> 1.

For n € Ny, we say that p properly passes through r precisely n times, if p may be
written in the form p = p,iie.p.e, - -€,p; with paths py,...,p,41 of length > 1
which do not properly pass through r.

Moreover, an ideal [ of relations in K'T"is called r-separated, in case I can be generated
as an ideal by a set R of relations such that for every Y. p;w; € R with p; € K\ {0}
and distinct paths w; in I', none of the w; properly passes through r.
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We denote by I' \ {r} the quiver obtained from I' by deleting the vertex r and all
adjacent arrows. If I' is the empty quiver without vertices and arrows, then KT is
the trivial zero-dimensional K-algebra with Coxeterpolynomial 1.

The conclusion of the following Lemma essentially allows us to count nonzero residue
classes of paths in a similar way as we count paths in the case of finite-dimensional
path algebras without relations:

Lemma 2.1. Consider a finite-dimensional K-algebra A = KT'/I and let r € VI' be
a vertexr such that I is r-separated. Then
(a) dimg e, Ae, =1
(b) Set T':=T\ {r} and A := KI'/(I 0 KT). The assignment

UuRP@vPwr— uv +w
yields an isomorphism

Ae,Qe, A B AL A

K

of A-A-bimodules.

Proof. We denote by P the K-subspace of KT generated by all paths starting and
ending in r and properly passing through r precisely n — 1 times. Let R C [ be a
generating set of relations which do not involve paths properly passing through r.

As an immediate consequence of the definitions, we get: If p is an element of R, p is
a path starting in r and ¢ is a path ending in r, then

(1) gop € |J P,
n>1

Hence,

(2) e,le, = P 1N P,
n>1

We write P := PU) /(I P(™). If moreover we denote by J the Jacobson radical
of A, i. e. the canonical image modulo [ of the ideal of KT generated by all arrows,
equation (2) yields

(3) e,Je, = @ P,
n>1
Next, we prove
P ~ ®” PO,

where ®" P(M is the n-fold tensor product off(l) with itself, taken over K. Together
with dimg A < oo and (3), this will give us P = 0 and hence (a).
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The exact sequence
InpY o pty _, p) g

induces the upper row of the following commutative diagram with exact rows:

é (®k—1 PO g (InPY)e Q" * P(l)) . ®@'PY @ PH

k=1
| |- |
InpPm - pn . pn) L
Here, the maps f and ¢ are defined by

9(P1 @py @ @ps) =pip2- P
and
J(pr @ Qprc1 @T QPrg1 @+ D Pp) =P1* Pk—1TPk41 " P

In order to prove that h is an isomorphism, it suffices to show that f is onto since ¢
is an isomorphism. We only have to consider the case n > 2. Pick = € I N P and
write @ = Y, Migipip; with A, € K\ {0}, p; € R and paths p;, ¢; starting resp. ending
in 7. Because of (1) and (2), we may assume ¢;p;p; € P for all i. Write p; = pie,pi
and ¢; = ¢,2€,¢;1 where p;, and ¢;; have smallest possible length > 0. Then we have
qapipia € I N PO, Moreover either py = e, and ¢ € P Y, or p; € P
and ¢;; = e,, or else there is some k; € {2,...,n — 1} such that p; € P" %) and
giz € P*=D_ In either case, we get ¢;p;p; € Im f since multiplication of paths yields
an isomorphism ®* PN 5 P® . Consequently, « € Im f.

Now consider the map ¢ : Ae,@x e,A & A — A in part (b) of the Lemma. Obviously,
it is well-defined, A-A-bilinear and surjective. In order to find a left inverse 1 to &,
we start with a K-linear map ¢g : KI' — Ae, @k e,A @ A, defined on the paths
p in I' as follows: if p can be written in the form p = poe,p; with paths py, p; (not
necessarily of length > 1), we set

bo(p) == (p2+1e,) @ (pr+ e, 1) @ 0.

This is well-defined, because if p = ¢2¢,¢1 is a different factorization of this kind, then
either ¢, = x¢, or ¢; = ¢jx with a suitable x € V), But V(Y C I in view of (a), and
thus (¢2 4 Ie,) @ (g1 + €.1) = 0. Analogously, one derives (py+ le,) @ (p1 +e,.1) = 0.

If p cannot be written in the form pye,py, we set
wo(p) =0 (p+INKT).

Now suppose © = 3. \jq;p;p; € I. If p; can be written in the form p; = p;re.py
with paths p;; and p;p, then ¢;p;pie € e, and ¥o(qip;p;) = 0. Similarly, if ¢; admits
a factorization ¢; = ¢;2€,¢;1, we have ¥o(q;p;p;) = 0. The remaining case is ¢;p;p; €
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I N KT, and again we obtain wo(qipip:) = 0. Thus ¢o(z) = 0 and 3y induces a
K-linear map b : A — Ae,®@xe.A & A which by construction is left inverse to ¢. [

The union of quivers is given by the union of the vertex sets and the disjoint union
of the arrow sets.

Now we are in a position to prove the main result:

Theorem 2.2. Let I';,1'; be two finite quivers with VI'y N VI'y = {r}, and let T' be
the union of I'y and T'y. Suppose that I C KT is an r-separated ideal of relations
such that A := KT'/I is finite-dimensional. Set T'y := I'y \ {r} and I'y := T’y \ {r}
and define the algebras Ay, Av, Ay, Ay canonically:

A= KU;/(INKT;) and A;:= KU /(INKT,)  fori=1,2.
Then
Ca =10k, 1 1OLI =10k, and  [Crl =[Oy, ][O, .

If this last determinant is nonzero, the Coxeterpolynomial of A is
¢A = ¢A1¢[\2 + ¢A1¢A2 - (T + 1)45[\1 ¢[\2-

Proof. We need some additional notation: for every i € VAl, let a; := dimg e, Ag;
and a; := dimg e¢;Ae,. Accordingly, for every 1 € VAQ, set b; := dimg e,Ae; and
b; := dimg ¢;Ae,. We consider a, a, b and b as column vectors and write C', (', Cy,
Cy, Cy instead of O}, Cyr,» Ca,, Ci,, Ck,-

First we observe that e,Aje; = e,Ae; and e;Aje, = e;Ae, since there are no arrows
connecting VI'; and VI'y and dimg e, Ae, = 1 by Lemma 2.1. Moreover, I N K1’ is
an r-separated ideal in KTy because every relation which does not involve any paths
properly passing through r lies either in KTy or in KT'5. Applying Lemma 2.1 to Ay,
we see that:

dimg e,Aqe, =1 and

dimg e;Are; = dimg ei/v\lej + aa; forall 7,7 € VIy.

Ci+adla|a
Clz( 1—t|—aa a)7
a 1

and by subtracting suitable multiples of the last row from the others, we get |Cl|v:
|Cy|. Analogously, we obtain |Cy] = |Cy|. If weset I := I'\{r}and A := KT'/(INKT),

another application of Lemma 2.1 together with

Thus
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gives us
Ciy+a'a|a| a'
C = ‘a 1 % ,
bla | b|Cy+ b

and hence |C| = |C1]|C4).
Now suppose C is invertible over Q. Then the same is true for Cy, C,, C; and C,
and we write @, ®;, ®,, &, & instead of ®,, &, , P, , ®; , ;..

If A and B are invertible matrices such that B = SA'S for some invertible matrix S,

we will write A ~ B. Note that in this case S(—'AA™")S™' = —‘BB~!, and therefore
—'AA~! and —!'BB~! have the same characteristic polynomial.

Obviously, we have

Gy +a'a | @ ¢ la-
01:( 1—t|—aa a)N( 11a a)::Dl‘
a 1 0 1

Moreover, observe that

and hence

—'D, Dt = ( : b ‘ (i)lv(a —a) ) ‘

Similarly, ®, and

(b— )5 b —b) — 1] (b—b)C5?
&y (b — b) 9

have the same characteristic polynomial. Applying the same reasoning to the full
algebra A and using
d | 0
®; = ],
0 | o,

we obtain that ® and
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have the same characteristic polynomial as well. Here, we set

A= fHa—a)C7la—a)+ (b—b)CTHb— D).

(Note that the quadratic form y(z) = txcglx has significance in its own right because
it is tightly connected to the Euler characteristic of the algebra A, see [5], p. 70.)

If finally we abbreviate
a =—(T+1),
o= (T+1) = Ya—a)C7a—a),
ay = (T+1)=1b—0C7 (b — D),
we recognize the theorem as a consequence of the following Lemma. [

Lemma 2.3. Let R be a commutative ring and F' € M, (R) a matriz of the following
form:

F fi 0
F = g1 |1+ a+ax| g
0 f2 Fy

where Fy € M, (R), I, € M,,,(R), ny +ny+1=n, a,ay,a; € R, fi, %9 € R™ and

fz,tgz € R™. Then
I f1 Ay | g2
Fl| =
| | ‘91 651 fa | F5

Proof. Develop the determinant with respect to the (ny + 1)-th row or column. [J

|Fy| + | Fy + o Fy || Fyl.

An obvious induction yields the following generalization of Theorem 2.2:

Corollary 2.4. Let I';, i = 1,...,1, be finite quivers with VI';,NVI'; = {r} fori # j,
and let I' be the union of the I';. Suppose that I C KT is an r-separated ideal of
relations such that A := KT'/I is finite-dimensional. Set A; :== KT';/(I N KT;) and
I, =T \ {r} and A; = Kfi/(] N Kfi) fore=1,...,t. Then

Y

¢
1Cy | =1Cx.| foralli and |Cp]=]]|Ch,
i=1

and if this last determinant is nonzero, we have

qu:(ﬁmi)(iZZ—u—m(ul)). 0
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3. THE HEREDITARY CASE

If A is hereditary, i. e. if A = KT and I' is a finite quiver without oriented cycles,
then the matrix C'y, and consequently also ®, and ¢,, depend only on the quiver I
and not on the base field K. In fact,

Cr := Cp = (# paths from j to ¢ in ') jyevrxvr,
and the adjacency matrix of I,
Ar = (# arrows from j to ¢ in I')( jyevrxvr,

satisfies Cp' = E—Ap where E is the VI' x VI identity matrix. With this in mind, one
obtains a combinatorial interpretation of the entries of & := &, as follows. Namely,
for ¢,5 € VI', a twisted path from i to j is defined to be a sequence (3, a1, ..., a1)
of arrows in I' such that (ay,—1,...,a1) is a path from ¢ to some vertex k and 3 is an
arrow from j to k. Roughly speaking, a twisted path consists of a ‘regular’ path to
which we attach an inverted arrow. With this convention, we obtain:

Proposition 3.1. The Coxetermatriz of a finite quiver I' without oriented cycles is
Or = (# twisted paths from i to j — # paths from i to j)i jyevrxvr

Proof. This follows from the above discriptions of Cr and its inverse and the fact
that the number of twisted paths from ¢ to j is the sum of all products (number of
paths from 7 to k) x(number of arrows from j to k) for k € VI'. O

It is interesting to note that the reduction formulas for the Coxeterpolynomial and
for the characteristic polynomial of the adjacency matrix for quivers of the type
considered in Corollary 2.4 are exactly the same. (Of course, the term (74 1), which
is the Coxeterpolynomial of a one-point quiver without arrows, has to be replaced
by the corresponding characteristic polynomial of the adjacency matrix, i. e. by T.)
The reason can again be found in Lemma 2.3.

Observe moreover that there is a tight connection between ¢r and the characteristic
polynomial of the underlying undirected graph in case every vertex of I' is either a
sink or a source; see e. g. [1].

We set .

(IES jj:_ 11 for every k € Z.
The linear graph Aj with & > 0 vertices has Coxeterpolynomial vii; as one easily
derives from Theorem 2.2 by induction. The orientation of the arrows does not have
any impact on the formula here; indeed, this is obviously true for A,, and thus follows
for higher values of k. In view of these remarks, a straightforward computation yields

the following




METHODS TO DETERMINE COXETERPOLYNOMIALS 9

Corollary 3.2. Let I'y and I'y be finite quivers without oriented cycles. Then the

quiver

ér, ¢, — K Tér\ (+} Oro\ (s}

has Cozeterpolynomial

The quiver

k arrows

has Cozeterpolynomial
vp¢r, or, — Tvp_y (¢r1\{r}¢r2 + or, ¢r2\{s}) + T 0k 201\ (1} Do\ (s}
irrespective of the orientation of the k arrows linking I'y and I'y. [

We conclude with an example of a class of quivers which cannot be tackled with
Theorem 2.2 and its corollaries:

Proposition 3.3. If ' is the quiver

=

1 arrows

2

N
.

\\LAQ
el

=

2 arrows
.

‘.
A\,

k t arrow

with t € N and kq,...,k € N (the case ky = --- = ky = 1 corresponding to a t-fold
multiple arrow between two vertices), then

or = (HW)(t—l T 1) =T — (t—2)(T+ 1) ivkﬂ)

Proof. We may assume ky = -+ = kg =1 and kspq,..., k> 1. Fori € {s+1,...,1},
set
-1 0
1 —1 . 1 0
¢, = . | e Mg,—1(Z) and @, := . | € My, -1(Z).
1 -1 10

(Entries which are not shown are assumed to be zero.) Then ®; is the Coxetermatrix
of a linear graph with k; — 1 vertices and all arrows pointing in the same direction.
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Counting the paths and twistpaths of I' as in Proposition 3.1, we get

ts+t—s—1 (t—l) (t—l) (t—l) —1
s+ 1 1 1 —1
s . : Lo
: (I)s—l—l
S 1
s+ 1 1
S ~
br = : a2
s
: 1 1
s+ 1
: b
1 1 1 —1

Now consider the matrix TF — ®r, add the last column to those corresponding to the
last columns of the ®;, and add the s-fold of the last column to the first. Next subtract
the T-fold of the first row from the last. Finally develop the resulting determinant
with respect to the last row and note that

T—t+s+1 1 1 1
-1 TE-®, .,
—1
TE-®,,
-1 TE—®,

is the Coxeterpolynomial of a star all arrows of which point away from the center.
By Corollary 2.4, it is equal to

( I o) ( 3 B (s =T+ 1)),

1=s+1 1=s+1 Uk;

7
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When developing the remaining determinant

1 1 1t

1

TE-®,q :
TE—®,,,

TE-®, |-

1

with respect to the first row, it is crucial to observe that the determinant of the
matrix obtained by replacing the last column of TE — ®; by {(1...1) is just vg,_;.
To simplify the resulting expression, one uses the identity

(T +1) — 2 — 2zt
Uk Uk ’
The result follows. [
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