
ON UNISERIAL MODULES IN THE
AUSLANDER-REITEN QUIVER

AXEL BOLDT AND AHMAD MOJIRI

Abstract. This article begins the study of irreducible maps in-
volving finite-dimensional uniserial modules over finite-dimensional
associative algebras. We work on the classification of irreducible
maps between two uniserials over triangular algebras, and give es-
timates for the number of middle terms of an almost split sequence
with a uniserial end term.

1. Introduction

The study of finite-dimensional uniserial modules over finite-dimen-
sional associative algebras was begun in earnest by Huisgen-Zimmermann
in [8]; Huisgen-Zimmermann and Bongartz achieved a description of
uniserial modules in terms of certain varieties in [5]. In the present arti-
cle, which is based on the authors’ theses [3] and [13], certain questions
regarding the position of uniserial modules in the Auslander-Reiten
quiver of finite-dimensional algebras are investigated; most of the work
applies to basic split triangular algebras only.

The article is organized as follows. In Section 2 we fix our notation
and conventions and recall the basic description of uniserials via vari-
eties. In Section 3 we present a general result that motivates much of
the following work: any irreducible map between two uniserials is either
the radical embedding or the socle factor projection of a uniserial mod-
ule. The two cases being dual, we go on to state a conjecture giving a
concrete necessary and sufficient condition for a uniserial over a trian-
gular algebra to have an irreducible radical embedding. The sufficiency
of this condition is proved using the technique of quiver representations.
The necessity of one part of the condition is then proved in a slightly
more general context.

We have not yet managed to prove the necessity of the full condition
for all triangular algebras. In Section 4 we prove it under an addi-
tional assumption, which includes the case of all triangular multiserial
algebras. In Section 5 we prove it for all monomial algebras.

The authors are grateful to Professor Walter D. Burgess for his valuable
suggestions.
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In Section 6 we study a general finite-dimensional algebra and focus
on a different circle of questions: almost split sequences with a uniser-
ial end term. First we give a simple general result: any short exact
sequence with uniserial end terms has a middle term which is either
indecomposable or a direct sum of two uniserials. Then we study the
number of indecomposable middle terms in an almost split sequence
ending in a uniserial module; an upper bound is given for multiserial
algebras.

2. Notation and preliminaries

Throughout, K will be a field and Γ will be a finite quiver with vertex
set Γ0 and arrow set Γ1. We compose arrows, paths and maps from
right to left: if p : e → f and q : f → g then qp : e → g. The
starting point of the path p is denoted by s(p) and its end point by
t(p). Λ = KΓ/I will be a finite-dimensional K-algebra presented as the
quotient of the path algebra of Γ by an admissible ideal I. Λ is called
triangular if Γ does not contain any directed cycles. Whenever useful,
we identify elements of Γ0 and paths in Γ with their corresponding
classes in Λ.

The category of finitely generated left Λ-modules is denoted by Λ- mod.
The direct sum of two module M and N is denoted by M tN . A mod-
ule is called uniserial if it has only one composition series with simple
factors. If U ∈ Λ- mod is uniserial with length n, then there exists a
path p in Γ of length n − 1 and an element x ∈ U such that px 6= 0.
Any such path is called a mast of U and any such element x is called
a top element of U . The terminology is that of [8].

Let p be a path in Γ. A path u is a right subpath of p if there exists
a path r with p = ru. Following [8], a detour on the path p is a pair
(α, u) with α an arrow and u a right subpath of p, where αu is a path in
Γ which is not a right subpath of p, but there exists a right subpath v of
p with length(v) ≥ length(u) + 1 such that the endpoint of v coincides
with the endpoint of α.

//

�
u

�

�
v

�

··· //

β 6=α
//

α

!!··· // // ··· //

We will abbreviate the statement “(α, u) is a detour on p” by (α, u) oo
p. Given any detour on p, let V (α, u) = {vi(α, u) | i ∈ I(α, u)} be the
family of right subpaths of p in KΓ which are longer than u and have
the same endpoints as α.
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Now suppose p has length l and passes consecutively through the
vertices e(1), . . . , e(l+ 1) (which need not be distinct). A route on p is
any path in Γ which starts in e(1) and passes through a subsequence
of the sequence (e(1), . . . , e(l + 1)) in this order and through no other
vertices. Given any uniserial module with mast p and top element x,
if (α, u) oo p, then αux =

∑
i∈I(α,u) ki(α, u)vi(α, u)x for unique scalars

ki(α, u). By [8], the points (ki(α, u))i∈I(α,u), (α,u)oop corresponding to
uniserials with mast p form an affine variety, called Vp, which lives in
AN , where N =

∑
(α,u)oop |I(α, u)|. Moreover, there is a surjective map

Φp from Vp onto the set of isomorphism types of uniserial Λ-modules
with mast p. It assigns to each point k = (ki(α, u))i∈I(α,u),(α,u)oop in Vp
the isomorphism type of the module Λe(1)/Uk, where

Uk =
∑

(α,u)oop

Λ

αu− ∑
i∈I(α,u)

ki(α, u)vi(α, u)

+
∑

q non-route on p

Λqe(1).

3. Irreducible Radical Embeddings of Uniserials

In this section, we first show that the only irreducible maps between
uniserial modules are certain radical embeddings JU ↪→ U and socle
factor projections U → U/socU . Then for a triangular algebra Λ =
KΓ/I, we propose necessary and sufficient combinatorial conditions
for the radical embedding JU ↪→ U of a uniserial module U to be
irreducible.

Proposition 3.1. Let R be a left artinian ring with Jacobson radical
J .

(1) If f : M → U is an irreducible injective map from the module
M ∈ R-mod to the uniseral U ∈ R-mod, then there exists an
isomorphism ϕ : JU → M so that fϕ is the natural radical
embedding JU ↪→ U .

(2) If g : U →M is an irreducible surjective map from the uniseral
U ∈ R-mod to the module M ∈ R-mod, then there exists an
isomorphism ψ : M → U/socU so that ψg is the natural socle
factor projection U → U/socU .

Proof. (1) Since im(f) is a proper submodule of U1, im(f) = J lU1

with l ≥ 1 and M ∼= J lU1 via f . However, if l > 1, then J lU1 →
J l−1U1 → U1 would be a non-trivial factorization of J lU1 → U1, giving
us a factorization of f , which is impossible. The proof of (2) is similar
to that of (1). �
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Since every irreducible morphism is either injective or surjective, the
only irreducible maps between two uniserial module are among radical
embeddings JU ↪→ U and socle factor projections U → U/socU . Since
the two cases are clearly dual, we will focus on radical embeddings in
the sequel.

Now assume that Λ = KΓ/I is a triangular algebra. To prepare for
our analysis in this section, we fix a finitely generated uniserial left
Λ-module U with mast

p = 1
α1−→ 2

α2−→ · · · αn−1−→ n.

On several occasions, we will refer to certain subpaths αi · · ·αj of p;
whenever i < j, this expression will simply stand for 1. We now name
all the arrows in Γ that touch p, classifying them according to the type
of contact with p.

B :=
{
β ∈ Γ1 | s(β) ∈ {1, . . . , n− 1} and t(β) 6∈ {1, . . . , n}

}
,

B′ :=
{
β′ ∈ Γ1 | s(β′) = n

}
,

C :=
{
γ ∈ Γ1 | s(γ) 6∈ {1, . . . , n} and t(γ) ∈ {2, . . . , n}

}
,

C ′ :=
{
γ′ ∈ Γ1 | t(γ′) = 1

}
,

D :=
{
δ ∈ Γ1 | {s(δ), t(δ)} ⊂ {1, . . . , n} and δ 6∈ {α1, . . . , αn−1}

}
.

For an illustration of these definitions with an example, consider the
following quiver Γ, together with the path p = α3α2α1:

γ′����
��

��
�

δ1

%%

α1

��
γ

����
��

��
�

α2

��

β

��
??

??
??

?

α3

��

δ2

(( ε

��

β′1

����
��

��
�

β′2 ��
??

??
??

?

We then have

B = {β}, B′ = {β′1, β′2}, C = {γ}, C ′ = {γ′}, D = {δ1, δ2}.
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Observe that, in general, our uniserial module U may be identified
with a representation U = ((Ux), (fα)) of Γ, where

Ux =

{
K, if x ∈ {1, . . . , n};
0, otherwise

and

fαi
= id for every i ∈ {1, . . . , n− 1}.

The module U is then completely determined by the choice of the mast
p and the scalars fδ(1) for δ ∈ D, different sets of scalars corresponding
to non-isomorphic modules. Unlike the hereditary case, not every path
is a mast, however, and not every set of scalars appears in this fashion,
since the relations in I impose restrictions.

We know from 3.1 that, in order to understand irreducible maps be-
tween uniserial modules, it is sufficient to study radical embeddings
(and their duals, socle factor projections). The following conjecture
covers this situation; we manage to prove “(2) ⇒ (1)” and a generaliza-
tion of “(1) ⇒ (2)(a)” in the sequel. We will also prove “(1) ⇒ (2)(b)”
for monomial and for multiserial algebras.

Conjecture 3.2. [3, Conjecture 1.2.1] Suppose Λ is a triangular al-
gebra and U is a uniserial Λ-module with mast p. Then the following
statements are equivalent:
(1) The embedding JU −→ U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:

(a) For every β ∈ B,

βαs(β)−1 · · ·α1 ∈ Jp,
and for every δ ∈ D,

δαs(δ)−1 · · ·α1 ∈ Kαt(δ)−1 · · ·α1.

(b) There exists a subset R ⊂ J such that {rp+ J2p | r ∈ R} forms
a K-basis for Jp/J2p and (i) and (ii) both hold:

(i) For every γ ∈ C there exists w ∈ pJ such that, for every r ∈ R,

rαn−1 · · ·αt(γ)γ = rw.

(ii) For every δ ∈ D and every r ∈ R,

rαn−1 · · ·αt(δ)δ ∈ Krαn−1 · · ·αs(δ).

Proof of “(2) ⇒ (1)”. Let V = ((Vx), (gα)) ∈ Λ- mod and suppose there
exist Λ-linear maps

JU
Φ=(Φx)

// V
Ψ=(Ψx)

// U
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such that ΨΦ is the embedding JU ↪→ U .
Observe that we can assume without loss of generality that the ele-

ments of the set R arising from condition (2) are normed in the follow-
ing fashion: r = eu(r)ren for certain vertices u(r) ∈ Γ0. We can thus
denote by gr the K-linear map Vn −→ Vu(r) induced by left multiplica-
tion by r.

Note furthermore that we can strengthen the conditions on δ ∈ D in
the following manner:

δαs(δ)−1 · · ·α1 = fδ(1)αt(δ)−1 · · ·α1

and for every r ∈ R

rαn−1 · · ·αt(δ)δ = fδ(1)rαn−1 · · ·αs(δ).

The first equation is clear, and the second one follows then from

rαn−1 · · ·αt(δ)δαs(δ)−1 · · ·α1 = fδ(1)rαn−1 · · ·α1

since rp 6= 0 for r ∈ R.
Case 1: There exists v ∈ V1 with Ψ1(v) = 1 and (grgαn−1 · · · gα1)(v) =
0 for all r ∈ R.
Our goal is to construct a section χ for Ψ in this case. First observe
that (gβ′gαn−1 · · · gα1)(v) = 0 for all β′ ∈ B′ as well, because Jpv ⊂∑

r Krpv + J2pv = J2pv implies Jpv = 0.
Define χ = (χx) : U −→ V by

χi(1) := (gαi−1···α1)(v) for i ∈ {1, . . . , n} and
χx := 0 for x 6∈ {1, . . . , n}.

Once we have checked that χ ∈ HomΛ(U, V ), the equality Ψ1χ1(1) = 1
will clearly imply Ψχ = id, completing the treatment of the first case.
So let us check that χ is Λ-linear. That gαi

χi = χi+1 = χi+1fαi
for

i ∈ {1, . . . , n− 1} is clear; moreover, we compute

gδχs(δ)(1) = (gδgαs(δ)−1
· · · gα1)(v)

= fδ(1)(gαt(δ)−1
· · · gα1)(v)

= χt(δ)fδ(1).

Now let β ∈ B ∪ B′. Then (βαs(β)−1 · · ·α1)(v) ∈ Jpv = 0, and again
gβχs(β) = 0 = χt(β)fβ.
Case 2: For every v ∈ V1 with Ψ1(v) = 1, there exists r ∈ R with
(grgαn−1 · · · gα1)(v) 6= 0.
In this case, we will construct a retraction χ for Φ. First we note that
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there exist linear maps ωr : Vu(r) −→ K for r ∈ R such that

Ψ1 =
∑
r∈R

ωrgrgαn−1 · · · gα1 .

Define χ = (χx) : V −→ JU by

χi := Ψi −
∑

r∈R ωrgrgαn−1···αi
for i ∈ {1, . . . , n} and

χx := 0 for x 6∈ {1, . . . , n}.

Again we need to check that χ is Λ-linear. For that purpose, we com-
pute χ1 = 0,

fαi
χi = Ψi+1gαi

− (
∑
r∈R

ωrgrgαn−1···αi+1
)gαi

= χi+1gαi

for i ∈ {1, . . . , n− 1}, and

fδχs(δ) = Ψt(δ)gδ − fδ(1)
∑
r∈R

ωrgrgαn−1···αs(δ)

= Ψt(δ)gδ −
∑
r∈R

ωrgrgαn−1···αt(δ)
gδ

= χt(δ)gδ

for δ ∈ D. In addition, we obtain χ1gγ′ = 0 = fγ′χs(γ′) for γ′ ∈ C ′. If
γ ∈ C, then we can clearly assume that the corresponding element w ∈
pJ from condition (2)(b)(i) has the form w = pw′ with w′ ∈ e1Jes(γ),
and it follows

ht(γ)gγ = fγΨs(γ) −
∑
r∈R

ωrgrgαn−1···αt(γ)
gγ

= 0−
∑
r∈R

ωrgαn−1···αt(γ)
gw′

= −Ψ1gw′

= −fw′Ψs(γ)

= 0 = fγχs(γ).
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Hence χ belongs indeed to HomΛ(V, JU). That χΦ = idJU is a conse-
quence of the following computation:

χ2Φ2(1) = Ψ2Φ2(1)−
∑
r∈R

ωrgrgαn−1···α2Φ2(1)

= 1−
∑
r∈R

ωrΦu(r)frfαn−1···α2(1)

= 1 .

Thus Φ is a split monomorphism in the second case, which shows that
the inclusion JU ↪→ U cannot be factored nontrivially. �

The implication (1) ⇒ (2)(a) is proved in [3] using the representa-
tions of algebras. In the sequel, we will generalize (1) ⇒ (2)(a), by
weakening the assumption that the quiver has no oriented cycle and
use the language of modules. The following result (which does not as-
sume that Λ is triangular) gives a first necessary condition for JU ↪→ U
to be irreducible.

Proposition 3.3. Let U be a uniserial Λ-module with mast p. Then
JU ↪→ U cannot be irreducible if there is an arrow leaving e := s(p)
besides the first arrow of p.

Proof. (i) Suppose p = p′β with β ∈ Γ1 and U = Λe/K where

K =
∑

(δ,u)oop

Λ

δu− ∑
i∈I(δ,u)

ki(δ, u)vi(δ, u)

+
∑

q nonroute on p

Λq .

Let α 6= β be an arrow leaving e. Then either (α, e)oop or α is a nonroute
on p. Here, we assume (α, e) oo p and we will prove that JU ↪→ U is
not irreducible. The proof for the case where α is a nonroute on p is
similar. Let V = Λe/L with

L =
∑

(δ,u)oop, (δ,u) 6=(α,e)

Λ

δu− ∑
i∈I(δ,u)

ki(δ, u)vi(δ, u)

+
∑

q nonroute on p

Λq .

We prove that JU ↪→ U factors nontrivially through V . Indeed

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ(β +K) = β + L and ψ(e+ L) = e+K. Then ψϕ = idJU .
Claim 1: ϕ is not a split monomorphism. Otherwise, suppose χ : V →
JU is a splitting of ϕ. Then χ(e + L) = k1w1 + · · · + ktwt +K where
w1, . . . , wt are right subpaths of p with t(wi) = e and wi 6= e for all
i. But we have χϕ = id. Thus, χϕ(β + K) = β + K. Therefore
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k1βw1 + · · · + ktβwt + K = β + K. Then, β ∈ J2U , which is a
contradiction.
Claim 2: ψ is not a split epimorphism. Otherwise we would have
χ1 : U → V such that ψχ1 = id. Hence χ1(e+K) = (le+

∑
i liwi)+L,

where l, li ∈ K and each wi is a nontrivial path with t(wi) = e. Then,

e+K = ψχ1(e+K) = ψ

(
(le+

∑
i

liwi) + L

)
= (le+

∑
liwi) +K .

Therefore l = 1 and
∑

i liwi ∈ K. Let w :=
∑

i liwi, ki := ki(α, e) and
vi := vi(α, e). Then, χ1(K) =

χ1((α−
∑

i∈I(α,e)

kivi)+K) =

α− ∑
i∈I(α,e)

kivi + (α−
∑

i∈I(α,e)

kivi)w

+L .

Therefore,

α−
∑

i∈I(α,e)

kivi + (α−
∑

i∈I(α,e)

kivi)w ∈ L .

This is a contradiction, since L is generated by paths of length greater
than one or not starting with α. �

Definition 3.4. [11] A detour (α, u) on a path p is called inessential
if

αu = s+
∑

i∈I(α,u)

kivi(α, u)

in Λ, where s is a K-linear combination of paths, none of which is a
route on p, and ki ∈ K for all i ∈ I(α, u). A detour is essential if it is
not inessential.

The following result generalizes Conjecture 3.2 (1) ⇒ (2)(a), by
weakening the assumption that the quiver has no oriented cycles.

Theorem 3.5. Let U be a non-simple uniserial module with mast p,
where p does not start with an oriented cycle. If JU ↪→ U is irreducible,
then

(i) All detours on p are inessential.
(ii) All non-routes are in Jp.

In particular, U = Λe/Jp with e = s(p).

Proof. Recall from Proposition 3.3 that no detour or non-route starts
at e = s(p). Let p = αn · · ·α1 and suppose (δi, ui) oo p for 0 ≤ i ≤ m.
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Let NR =
∑

q nonroute on p Λqe and

∆j = δjuj −
∑

i∈I(δj ,uj)

ki(δj, uj)vi(δj, uj) .

Proof of (i): We first assume that K 6= Z2. Suppose U = Λe/K, where
K =

∑m
j=1 Λ∆j + NR, with m minimum. If m > 0, let U ′ = Λe/L

where L =
∑m

j=2 Λ∆j + J∆1 + NR. Notice that eJe ⊆ NR by our

assumption on p; hence eU ′ = (Ke+ L)/L. Let

V =
U ′ t JU ′

H
,

where H = Λ(p + L, kp + L) + Λ(∆1 + L,∆1 + L) with 0, 1 6= k ∈ K.
We have

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ(α1+K) = (α1+L, α1+L)+H and ψ((e+L, 0+L)+H) = se+K
and ψ((0+L, α1 +L)+H) = lα1 +K, with s, l ∈ K such that s+ l = 1
and s+ lk = 0. Note that such elements exist, since K 6= Z2.
1. ϕ is well-defined:

ϕ(∆1 +K) = (∆1 + L,∆1 + L) +H = H .

2. ψ is well-defined: We have ψ((p+L, kp+L)+H) = sp+ lkp+K =
0 +K, and ψ((∆1 + L,∆1 + L) +H) = s∆1 + l∆1 +K = 0 +K.
3. ψϕ = idJU :

ψϕ(α1 +K) = ψ((α1 + L, α1 + L) +H) = sα1 + lα1 +K = α1 +K .

4. ϕ is not a split monomorphism: Otherwise there would exist χ ∈
HomΛ(V, JU) such that χϕ = id. Then χ((e+L, 0+L)+H) = 0+K.
Hence,

α1+K = χϕ(α1+K) = χ((α1+L, α1+L)+H) = χ((0+L, α1+L)+H) .

Then χ((0 + L, α1 + L) +H) = α1 +K. Therefore, χ(H) =

χ((p+ L, kp+ L) +H) = χ((p+ L,L) +H) + χ((L, kp+ L) +H)

= kp+K 6= K ,

which is a contradiction. Therefore, ψ splits; i.e., there exists χ1 ∈
HomΛ(U, V ) such that ψχ1 = id. Hence χ1(e+K) = (s−1e+L,L)+H
because of the assumption that p does not start with an oriented cycle.
Then,

χ1(0 +K) = χ1(∆1 +K) =
(
s−1∆1 + L,L

)
+H = H .
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Then, (s−1∆1 + L,L) ∈ H. Hence,

(s−1∆1 + L,L) = z(p+ L, kp+ L) + z′(∆1 + L,∆1 + L) ,

with z, z′ ∈ Λ. Therefore we have

s−1∆1 + L = zp+ z′∆1 + L ,

L = kzp+ z′∆1 + L .

Then, s−1∆1 + L = (1− k)zp + L. Hence ∆1 − s(1− k)zp ∈ L. Thus
∆1 − s(1 − k)zp =

∑m
i=2 µi∆i + ν∆1 + ω with µi ∈ K, ν ∈ J and

ω ∈ NR. Then s(1 − k)zp ∈ K. This implies zp ∈ Jp, since pU 6= 0.
Hence ∆1 ∈ L. This is in contradiction with the minimality of m.

Now suppose K = Z2. With the same notation, let

V =
U ′ t JU ′ t JU ′

H
,

where H = Λ(0 + L, p+ L, p+ L) + Λ(∆1 + L,∆1 + L,∆1 + L). Then
as in the previous case,

JU
ϕ−−→ V

ψ−−→ U ,

is a nontrivial factorization of JU ↪→ U through V , where ϕ(α1 +K) =
(α1 +L, α1 +L, α1 +L) +H and ψ((e+L, 0 +L, 0 +L) +H) = e+K,
ψ((0+L, α1+L, 0+L)+H) = α1+K and ψ((0+L, 0+L, α1+L)+H) =
α1 +K.

Proof of (ii): Again first assume that K 6= Z2. By part (i), U = Λe/K
where K =

∑m
i=1 Λβiui + Jp, and each βiui is nonroute on p with ui a

right subpath of p, βi ∈ Γ1. Assume m is minimum. If m > 0, then let
U ′ = Λe/L where L = (

∑m
i=2 Λβiui + Jp) and

V =
U ′ t JU ′

H
,

where H = Λ(p + L, kp + L) + Λ(β1u1 + L, β1u1 + L) for some k ∈
K, k 6= 0, 1. We have

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ(α1 +K) = (α1 + L, α1 + L) and ψ((e+ L,L) +H) = se+K,
and ψ((L, α1 +L)+H) = lα1 +K with s, l ∈ K such that s+ l = 1 and
s + kl = 0. As in (i) we can see that ϕ, ψ are well-defined,ψϕ = idJU ,
and ϕ is not a split monomorphism. Therefore ψ is split; i.e., there is a
χ ∈ HomΛ(U, V ) such that ψχ = id. Hence χ(e+K) = (s−1e+L,L)+
H. Then

χ(K) = χ(β1u1 +K) = (s−1β1u1 + L,L) .
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Therefore, (s−1β1u1 +L,L) = w(p+L, kp+L)+w′(β1u1 +L, β1u1 +L)
where w,w′ ∈ Λ. Hence,

s−1β1u1 + L = wp+ w′β1u1 + L ,

L = kwp+ w′β1u1 + L .

Therefore s−1β1u1 + L = (1− k)wp+ L. Hence

(1) s−1β1u1 + (k − 1)wp = vp+
m∑
i=2

wiβiui ,

where v ∈ J and wi ∈ Λ. If we multiply equation (1) by t(β1) from the
left, we get that t(β1)wp is zero or a nonroute on p, since t(β1) 6= t(p).
Then equation (1) is in contradiction with the minimality of m since
it expresses β1u1 as an element of L.

Now suppose that K = Z2. With the same notation, let

V =
U ′ t JU ′ t JU ′

H
,

where H = Λ(0 + L, p + L, p + L) + Λ(β1u1 + L, β1u1 + L, β1u1 + L).
We have

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ(α1 +K) = (α1 +L, α1 +L, α1 +L) and ψ((e+L,L, L)+H) =
e+K, ψ((L, α1+L,L)+H) = α1+K and ψ((L,L, α1+L)+H) = α1+K.
Similarly, this is a nontrivial factorization of JU ↪→ U through V . �

Example 3.6. In order to provide a better understanding of the differ-
ent cases that would have to be dealt with in a proof of “(1) ⇒ (2)(b)”,
we include here a series of examples where condition (2)(b) of Conjec-
ture 3.2 is violated. A non-trivial factorization of the radical embedding
is given in each of these cases.
(a) Suppose Γ is given by

3

γ1
��

==
==

==
= 1

α1

��

4

γ2
����

��
��

�

2

β1

��

β2





5

with relations β1α1 = β2α1 and β1γ1 = 0 = β2γ2. Here U is the unique
uniserial with mast α1. The embedding JU ↪→ U can then be factored
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non-trivially through a module with graph

1 3 4

2 2

β2

2

β15

(b) Now Γ is given by

3

γ1
��

==
==

==
= 1

α2

��

4

γ2
����

��
��

�

2

β1

��

β2

��
==

==
==

=

5

ε
����

��
��

�

6

with relations εβ2γ2 = β1γ2 and β1γ1 = 0 = β2α1. Again, U is the
unique uniserial with mast α1. In this case, the radical embedding can
be factored through the indecomposable with graph

1 4 3

2 2

��
��
��
��
��
��
��

2

��
��

��
�

5

��
��

��
�

6
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(c) Consider the quiver Γ

1

α1

��

4

γ1
����

��
��

�

2

α2

��

β2

��

3

β1

��

5

with relations β2α1 = β1α2α1 and β2γ1 = 0. The radical embedding
of the uniserial with mast α2α1 can be factored through the following
indecomposable module:

1 4

2 2

��
��
��
��
��
��
��

2

��
��

��
�

3 3

��
��

��
�

5

(d) In our final example, let Γ be given by

1

α1

��

2

α2

��

δ1
��

3

β1

��

4
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and consider the relation δ1α1 = α2α1. We can factor the radical em-
bedding of the uniserial with mast α2α1 through the module

1

2 2 2

δ1��
��

��
�

3 3

��
��

��
�

4

Remark 3.7. In order to tackle the remaining implication “(1) ⇒ (2)(b)”
of Conjecture 3.2, it is convenient to have the following reformulation
of condition (2)(b) at hand:
(2)(b’) There exists a family (wγ) ∈ (pJ)C, such that for every x ∈
Γ0 and µ ∈ exJp/exJ

2p, we can find r ∈ exJen with µ = rp +
exJ

2p and rαn−1 · · ·αt(γ)γ = rwγ for all γ ∈ C and rαn−1 · · ·αt(δ)δ ∈
Krαn−1 · · ·αs(δ) for all δ ∈ D.

Assume that condition (1) holds, i. e., that the canonical embedding
JU −→ U is irreducible, and that (2)(b’) is violated. We then get, for
every family (wγ), a special vertex x and an element µ ∈ exJp/exJ

2p
from the negation of this statement. Since (2)(a) holds, this allows us

to “lengthen” U to a uniserial module Û in such a fashion that U is
an epimorphic image of Û and soc Û ' Λex/Jex (note however that

there is a choice involved: Û is not uniquely determined by U and µ).
Here are two potential approaches to the construction of a module M
through which the radical embedding of U factors non-trivially:
(a) Let M be the module obtained from gluing the socles of Û and
D(e(x)Λ) (where D = HomK(−,K) denotes the usual duality). The
problem then is to find a “good” map from JU to M .
(b) This time, we begin by gluing the socles of Û and JÛ together to
obtain M̌ ; this allows for a natural embedding of JU . Of course, this
particular embedding splits, and we have to extend M̌ to a module
M having M̌ as an epimorphic image in order to prevent this from
happening.

4. The case of left multiserial triangular algebras

Throughout this section we assume that the algebra Λ is a triangu-
lar algebra. In this section, using approach (b) from above, we will
show that Conjecture 3.2 is true whenever the mast p has the following
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additional property:

dimK

(
Jαn−1/J

2αn−1

)
≤ 1 .

In this section, we will assume that Λ is triangular, i.e. that Γ has
no oriented cycles.

Lemma 4.1. Let U be a uniserial module with mast p and β′ be an
arrow. If JU ↪→ U is irreducible and β′p 6= 0, then there is a uniserial
module with mast β′p.

Proof. There is a basis {β′ip + J2p | 1 ≤ i ≤ m,β′i ∈ Γ1} for Jp/J2p,
with β′1 = β′. Let

p = 1
α1−−−→ 2

α2−−−→ 3 · · · αn−1−−−−→ n ,

and n+1 := t(β′), q := β′p and suppose (δ, u)ooq. If t(δ) ∈ {1, 2, . . . , n},
then (δ, u) oo p and so by Theorem 3.5(i), δu ∈ Kαt(δ)−1 · · ·α1. If t(δ) =
n+ 1, then by Theorem 3.5(ii), δu ∈ Jp. Hence,

(2) δu = l1β
′p+ l2β

′
2p+ · · ·+ lmβ

′
mp+ wp ,

with w ∈ J2, li ∈ K. If for some β ∈ Γ1, βu is a nonroute on q, then it
is a nonroute on p as well and so βu ∈ Jp and t(β) /∈ {1, . . . , n + 1}.
Hence, in this case, βu ∈

∑m
i=2 Kβ′ip+ J2p. Define V = Λe/L, where

(3) L := Jq +
m∑
i=2

Λβ′ip+
∑

(δ,u)ooq, t(δ)=n+1

Λ (δu− l1q) .

Thus, V is a uniserial module. We only need to show that qV 6= 0.
Suppose qV = 0. Then, q ∈ L and by equations (2) and (3), we get
q ∈ Jq +

∑m
i=2 Λβ′ip+ J2p. Then,

(4) q = vq +
m∑
i=2

λiβ
′
ip+ w′p ,

with v ∈ J, λi ∈ Λ and w′ ∈ J2. Multiply equation (4) by t(β′). Since
the quiver does not have oriented cycles, vq = 0, which contradicts the
choice of the basis of Jp/J2p.

�

Lemma 4.2. Suppose dimK Jαn−1/J
2αn−1 = 1. Then there exists an

arrow β′ such that Kβ′αn−1 + Jβ′αn−1 = Jαn−1.

Proof. By the hypothesis there is some β′ ∈ Γ1 with β′αn−1 /∈ J2αn−1.
We will show that J2αn−1 = Jβ′αn−1. For this we only need to show
that any path in J2αn−1 is in Jβ′αn−1. If not, let q be a longest
path in J2αn−1\Jβ′αn−1. Then q = γr · · · γ1αn−1, where γi ∈ Γ1 and
γ1αn−1 /∈ J2αn−1, otherwise q could be replaced by a longer path.
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Hence γ1αn−1 = kβ′αn−1 + wαn−1, where 0 6= k ∈ K and w ∈ J2.
Therefore,

q = γr · · · γ1αn−1 = kγr · · · γ2β
′αn−1 + γr · · · γ2wαn−1 .

Since γr · · · γ2wαn−1 is a linear combination of paths in J2αn−1 longer
than q, and therefore γr · · · γ2wαn−1 ∈ Jβ′αn−1 and so is q. This is a
contradiction. �

Theorem 4.3. Let Λ be a triangular algebra and U be a uniserial Λ-
module with mast p = αn−1 · · ·α1. If dimK Jαn−1/J

2αn−1 ≤ 1, then the
following statements are equivalent:

(1) The embedding JU ↪→ U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:

(a) For every β ∈ B,

βαs(β)−1 · · ·α1 ∈ Jp ,
and for every δ ∈ D,

δαs(δ)−1 · · ·α1 ∈ Kαt(δ)−1 · · ·α1 .

(b) Jp/J2p = 0 or there is an arrow β′ such that {β′p + J2p}
forms a K-basis for Jp/J2p and (i) and (ii) both hold:

(i) For every γ ∈ C there exists w ∈ pJ such that

β′αn−1 · · ·αt(γ)γ = β′w .

(ii) For every δ ∈ D
β′αn−1 · · ·αt(δ)δ ∈ Kβ′αn−1 · · ·αs(δ) .

Proof. Note first that, under the present hypotheses, the conditions
(2) are equivalent to those in Conjecture 3.2. The conditions (2)(a) are
identical.

We have that dimK Jαn−1/J
2αn−1 ≤ 1 so that, by Lemma 4.2, we can

take the set R of Conjecture 3.2(2)(b) to be {β′p + J2p} or ∅. Then
Conjecture 3.2(2)(b)(i) and (ii) reduce to the corresponding parts of
this theorem.

(1) ⇒ (2)(b)(i):
Suppose Jp/J2p 6= 0. Let β′p ∈ Jp\J2p with β′ ∈ Γ1. Then β′αn−1 ∈
Jαn−1\J2αn−1 and {β′αn−1+J2αn−1} is a basis for Jαn−1/J

2αn−1. We
will show that for γ ∈ C, β′αn−1 · · ·αt(γ)γ ∈ β′pJ . By (2)(a), we know
that U = Λe1/Jp where e1 = s(p). Let q = β′p and K = Jp. By
Lemma 4.1, there exists a uniserial module Uq = Λe1/L with mast q,
where

L = Jq +
∑

(δ,u)oop, t(δ)=t(q)

(δu− l(δ, u)q) .
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Let

V =
Uq t JUq t Λex

H
,

where H = Λ(q + L, q + L, 0) + Λ(L, αn−1 · · ·α1 + L, αn−1 · · ·αt(γ)γ)
with ex = s(γ).

Uq

α1

55
55

55
55

55
55

55
5 JUq Λex

γ

vvvvvvvvv

Notice that e1V = K(e1+L, 0, z)+H, where z is a linear combination
of paths from s(γ) = ex to e1. We have

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ(α1 +K) = (α1 +L, α1 +L, 0)+H and ψ((e1 +L,L, 0)+H) =
e1 +K,ψ((L, α1 + L, 0) +H) = 0 and ψ((L,L, ex) +H) = 0. Then, ϕ
and ψ are well-defined, ψϕ = idJU .
Claim: ϕ is not a split monomorphism; otherwise there would exist
χ : V → JU such that χϕ = id. We have α1 + K = χψ(α1 + K) =
χ(α1+L, α1+L, 0) = χ(α1+L,L, 0)+χ(L, α1+L, 0) = χ(L, α1+L, 0),
because χ(e1 +L,L, 0) = 0. Also we have χ(L,L, ex) = 0. But χ(H) =

χ((L, αn−1 · · ·α1 + L, αn−1 · · ·αt(γ)γ) +H) = αn · · ·α2α1 +K 6= K ,

which is a contradiction. Therefore ψ splits, i.e., there exists χ1 : U →
V , with ψχ1 = id. We have χ1(e1 +K) = ((e1 +L,L,

∑m
i=1 kiwi) +H),

where wi are the paths from ex to e1 and ki ∈ K. But q ∈ K and so

χ1(K) = χ1(q +K) = (q + L,L,

m∑
i=1

kiqwi) +H .

Hence,

(q+L,L,
m∑
i=1

kiqwi) ∈ Λ(q+L, q+L, 0)+Λ(L, αn−1 · · ·α1+L, αn−1 · · ·αt(γ)γ) .
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Then, by Lemma 4.2 (q + L,L,
∑m

i=1 kiqwi) =

k(q + L, q + L, 0) + lβ′(L, αn−1 · · ·α1 + L, αn−1 · · ·αt(γ)γ))

+
∑
l(ui)≥1

liuiβ
′(L, αn−1 · · ·α1 + L, αn−1 · · ·αt(γ)γ) ,

where k, l, li ∈ K. Therefore k = 1 and l = −1. Hence,

(∗) β′αn−1 · · ·αt(γ)γ = −
∑

kiβ
′αn−1 · · ·α1wi−

∑
l(ui)≥1

liuiβ
′αn−1 · · ·αt(γ)γ .

If we multiply (∗) from the left by t(β′); using the fact that quiver does
not have oriented cycles, t(β′)ui = 0. Then,

β′αn−1 · · ·αt(γ)γ = −
∑

kiβ
′αn−1 · · ·α1wi ∈ β′pJ .

(1) ⇒ (2)(b)(ii):
Suppose δ ∈ D. We will show that β′αn−1 · · ·αt(δ)δ ∈ Kβ′αn−1 · · ·αs(δ).
Let δ : i → j and q := β′αn−1 · · ·α1. Again let Uq = Λe/L be the
uniserial with mast q, with L as above. Let

V =
Uq t JUq t Λei

H
,

where

H = Λ(q+L, q+L, 0)+Λ(L, αn−1 · · ·α1+L, αn−1 · · ·αjδ)+Λ(L,L, αn−1 · · ·αi) .

We have

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ(α1 +K) = (α1 +L, α1 +L, 0)+H and ψ((e1 +L,L, 0)+H) =
e1 +K,ψ((L, α1 + L, 0) +H) = 0 and ψ((L,L, ei) +H) = 0. Then, ϕ
and ψ are well-define and ψϕ = idJU .
Claim: ϕ is not split monomorphism; otherwise there would exist
χ : V → JU such that χϕ = id. Then we would have α1+K = χϕ(α1+
K) = χ((α1 + L, α1 + L, 0) +H) = χ((α1 + L,L, 0) +H) + χ((L, α1 +
L, 0) +H) = χ((L, α1 + L, 0) +H), because χ((e1 + L,L, 0) +H) = 0.
Also we know that χ((L,L, ei) +H) = kαi−1 · · ·α1 +K, where k ∈ K .
Thus, χ(H) = χ((L,L, αn−1 · · ·αi)+H) = kαn−1 · · ·α1+K. Therefore,
k = 0. But

χ(H) = χ((L, αn−1 · · ·α1+L, αn−1 · · ·αjδ)+H) = αn−1 · · ·α2α1+K 6= K ,

which is a contradiction.
Therefore, ψ splits, i.e., there exists χ1 : U → V with ψχ1 = id. We

have χ1(e1 + K) = (e1 + L,L, 0) + H. Hence χ1(K) = χ1(q + K) =
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(q1 + L,L, 0) +H. Therefore,

(q +L,L, 0) ∈ Λ(q +L, q +L, 0) + Λ(L, αn−1 · · ·α1 +L, αn−1 · · ·αjδ)
+ Λ(L,L, αn−1 · · ·αi) .

Then by Lemma 4.2

(q+L,L, 0) = k(q+L, q+L, 0)+ lβ′(L, αn−1 · · ·α1 +L, αn−1 · · ·αjδ)

+
∑

l(us)≥1

lsusβ
′(L, αn−1 · · ·α1 + L, αn−1 · · ·αjδ)

+ v(L,L, αn−1 · · ·αi) ,
where l, ls ∈ K, us ∈ J and v ∈ Λ. Hence k = 1 and l = −1. Therefore,

(∗∗) q3 = β′αn−1 · · ·αjδ =
∑

l(us)≥1

lsusβ
′αn−1 · · ·αjδ + vαn−1 · · ·αi ,

in Λei. If we multiply (∗∗) from the left by t(β′); using the fact that
there are no oriented cycles, t(β′)ui = 0. We get

β′αn−1 · · ·αjδ = t(β′)vαn−1 · · ·αi .
Then t(β′)vαn−1 ∈ Jαn−1. But Jαn−1 = Kβ′αn−1+Jβ

′αn−1 by Lemma 4.2.
Therefore,

β′αn−1 · · ·αjδ = kβ′αn−1 · · ·αi + wβ′αn−1 · · ·αi ,
where w ∈ J . But, t(β′)w = 0, since there are no oriented cycles.
Therefore, β′αn−1 · · ·αjδ = kβ′αn−1 · · ·αi. �

Definition 4.4. An algebra Λ with Jacobson radical J is called left
multiserial (m-multiserial) if, for each primitive idempotent e of Λ, the
left ideal Je is a sum of uniserial (m uniserial) Λ-modules.

By the work above, Conjecture 3.2 is true for all triangular algebras
with a presentation so that for each α ∈ Γ1, Λα is uniserial. Every
left multiserial algebra is isomorphic to one with such a presentation
(see [11, Remark 2.3]).

5. The case of monomial algebras

Throughout this section we assume that the algebra Λ is a triangu-
lar algebra. We will prove that the conjecture is true for monomial
algebras.

Theorem 5.1. Suppose Λ is a triangular monomial algebra and U is
a uniserial Λ-module with mast p. Then the following statements are
equivalent:

(1) The embedding JU ↪→ U is irreducible.
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(2) U is not simple and satisfies both (a) and (b) below:
(a) (i) For every β ∈ B, βαs(β)−1 · · ·α1 = 0,

(ii) For every δ ∈ D, δαs(δ)−1 · · ·α1 = 0.
(b) For every β′ ∈ B′ such that β′p 6= 0 we have:

(i) For every γ ∈ C, β′αn−1 · · ·αt(γ)γ = 0,
(ii) For every δ ∈ D, β′αn−1 · · ·αt(δ)δ = 0.

Proof. Note first that, since the algebra is monomial, the conditions
(2) are equivalent to the ones in Conjecture 3.2.

(1) ⇒ (2)(b)(i):
Let p = αn−1 · · ·α1 and U = Λe1/K. Suppose that there is β′ ∈ B′

such that β′p 6= 0 and β′αn−1 · · ·αiγ 6= 0 for some γ ∈ C, where

x
γ−−→ i, with x /∈ {1, 2, . . . , n}. By condition (2)(a), Vp = {0}. Let

q1 := β′αn−1 · · ·α1, q2 := β′αn−1 · · ·αiγ .

Since Λ is a monomial algebra and qi 6= 0; By [12, Proposition 2.3],
0 ∈ Vqi for i = 1 and 2. Let Uq1 := Φq1(0) = Λe1/L and Uq2 := Φq2(0) =
Λex/F , where ex = s(γ). Let

V =
Uq1 t JUq1 t Uq2

H
,

where

H = Λ(q1 + L, q1 + L, F ) + Λ(L, αn−1 · · ·α1 + L, αn−1 · · ·αiγ + F ) .

Once again, for v ∈ V , e1v = (ke1 + L,L, z + F ) + H, where z is a
linear combination of paths from s(γ) to e1. However, such a path goes
through e1 and so is a non-route on q2, i.e., z ∈ F . We have

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ : JU → V by α1+K 7→ (α1+L, α1+L, F )+H and ψ : V → U
by (e1 + L,L, F ) + H 7→ e1 + K, (L, α1 + L, F ) + H 7→ 0 + K and
(L,L, ex + F ) + H 7→ 0. Then, ϕ and ψ are well-defined and ϕ is
not split monomorphism. We will prove that ψ also is not a split
epimorphism, which contradicts the irreducibility of JU ↪→ U .
Claim : ψ is not a split epimorphism: Suppose there exists χ : U → V
with ψχ = id. We have χ(e1 + K) = (e1 + L,L, F ) + H. But q1 =
β′αn−1 · · ·α1 ∈ K. Hence χ(K) = χ(q1 + K) = (q1 + L,L, F ) + H is
zero in V . Then (q1 +L,L, 0) = k(q1 +L, q1 +L, 0) + lβ′(αn−1 · · ·α1 +
L, αn−1 · · ·αt(γ)γ + L, F ), where k, l ∈ K. Therefore k = 1, k + l =
0, l = 0, which is a contradiction.

(1) ⇒ (2)(b)(ii):
Suppose there is β′ ∈ B′ such that β′p 6= 0 and β′αn−1 · · ·αt(δ)δ 6= 0
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for some δ ∈ D. Let δ : i→ j. By (a)(ii), s(δ) = i 6= 1. Let

q1 := β′αn−1 · · ·α1, q2 := β′αn−1 · · ·αjδ .
and let Uqi = Λe1/Li be the uniserial module corresponding to 0 ∈ Vqi
for i = 1, 2. Let

V =
Uq1 t JUq1 t Uq2

H
,

where H = Λ(q1, q1, 0) + Λ(0, αn−1 · · ·α1, αn−1 · · ·αjδ).

Uq1

α1

77
77

77
77

77
77

77
77 JUq1 Uq2

δ
vvvvvvvvv

We have

JU
ϕ−−→ V

ψ−−→ U ,

where ϕ : JU → V by α1 +K 7→ (α1 +L, α1 +L, F ) +H and ψ : V →
U by (e1 + L,L, F ) + H 7→ e1 + K, (L, α1 + L, F ) + H 7→ K and
(L,L, ei+F )+H 7→ K. Again, ϕ and ψ are well-defined and ψϕ = idJU .
Claim: ϕ is not a split monomorphism:
Suppose there exists χ : V → JU such that χϕ = id. Then, we have
α1 +K = χψ(α1 +K) = χ(α1 +L, α1 +L, F )+H = χ((α1 +L,L, F )+
H)+χ((L, α1 +L, F )+H) = χ((L, α1 +L, F )+H). Also we know that
χ((L,L, ei + F ) = kαi−1 · · ·α1 +K, where k ∈ K. Then χ((L,L, δei +
F ) = kδαi−1 · · ·α1 +K = 0, by (a)(ii), and

χ(H) = χ(L, αn−1 · · ·α1+L, αn−1 · · ·αjδ+F ) = αn−1 · · ·α2α1+K 6= K ,

which is a contradiction.
Claim: ψ is not a split epimorphism:
Suppose there χ1 : U → V with ψχ1 = id. We have χ1(e1 + K) =
(e1 + L,L, F ) +H. Hence χ1(K) = χ1(q1 +K) = (q1 + L,L, F ) +H.
Therefore (q1 + L,L, F ) +H = H, and so

(q1+L,L, F ) ∈ Λ(q1+L, q1+L, F )+Λβ′(L, αn−1 · · ·α1+L, αn−1 · · ·αjδ+F ) .

Then (q1+L,L, F ) = k(q1+L, q1+L, F )+lβ′(L, αn−1 · · ·α1+L, αn−1 · · ·αjδ+
F ), with k, l ∈ K. Therefore k = 1, k+ l = 0, l = 0, which is a contra-
diction.

�
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6. Almost split sequences with uniserial end terms

In this section, we first show that if we have an arbitrary exact
sequence with uniserial end terms, then the middle term is either inde-
composable or a direct sum of two uniserials. Then we study α(U), the
number of indecomposable summands of the middle term of an almost
split sequence ending in U , where U is a uniserial Λ-module and give
a global upper bound for it in the case that Λ is a multiserial algebra.

Proposition 6.1. Let R be a left artinian ring and consider a short
exact sequence

0 // U1

f
// M

g
// U2

// 0

in R-mod with uniserial modules U1 and U2. Then M is either inde-
composable or a direct sum of two uniserial modules.

Proof. We will again denote the Jacobson radical of R by J . Assume
we have a decompositionM = M1⊕M2 with bothM1 andM2 non-zero.
Decompose f and g accordingly, i. e., write f =

(
f1
f2

)
and g = (g1, g2),

and let

¯: R- mod −→ (R/J)- mod

be the functor R/J ⊗
R
−. We then get the right exact sequence

Ū1

(f̄1
f̄2
)

// M̄1 ⊕ M̄2

(ḡ1,ḡ2)
// Ū2

// 0

where Ū1 and Ū2 are simple and M̄1, M̄2 non-zero semisimple. Com-
paring the lengths of the involved modules, we see that both M̄1 and
M̄2 must be simple and f̄ 6= 0. Without loss of generality, we may
assume f̄1(Ū1) = M̄1.

Pick u1 ∈ U1 \ JU1. Then f1(u1) ∈ M1 \ JM1 generates M1. Hence
f1 is surjective and M1 is uniserial. If f2(u1) = 0, then f2 = 0 and g2 is
injective, and consequently M2 is uniserial. If f2(u1) 6= 0, we can find
l ≥ 0 with f2(u1) ∈ J lM2 \ J l+1M2. If l = 0, then f2(u1) generates M2

and M2 is therefore uniserial. We will assume l > 0 from now on.
Claim 1: im(g1) ⊂ J lU2.
Let m1 ∈ M1; write m1 = αf1(u1) = f1(αu1) with α ∈ Λ. Then
g1(m1) = g(m1) = gf1(αu1) − gf(αu1) = −gf2(αu1) ⊂ g(J lM2) ⊂
J lU2. Hence we have g1(M1) ⊂ J lU2.
Claim 2: g2 is surjective and the map M2/J

lM2 −→ U2/J
lU2 induced

by g2 is an isomorphism.
Let m2 ∈ M2 \ JM2. Then u2 := g2(m2) ∈ U2 \ JU2 (since g2(m2) ∈
JU2 would imply im(g) = im(g1) + im(g2) ⊂ J lU2 + JU2 $ U2, a
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contradiction). Since u2 generates U2, g2 is surjective. Now let x ∈
M2 \ J lM2 and assume g2(x) ∈ J lU2, say g2(x) = αu2 = g2(αm2) with
α ∈ J l. Then x − αm2 ∈ kern(g2) \ J lM2 ⊂ im(f2) \ J lM2 = ∅, again
a contradiction.
Claim 3: J lM2 is uniserial.
By restricting our maps f and g, we obtain the following short exact
sequence:

0 // U1
// M1 ⊕ J lM2

// J lU2
// 0

and we see as above that J lM2/J
l+1M2 is simple, hence J lM2 is gen-

erated by f2(u1) and f2 : U1 −→ J lM2 is therefore surjective.
Claim 4: M2 is uniserial.
We know that JkM2/J

k+1M2 is simple or 0 for all k ∈ N. �

In the sequel, Λ will be a finite-dimensional algebra over K.
The following proposition gives a general upper bound for the num-

ber α(U) for a uniserial module U :

Proposition 6.2. If U ∈ Λ-mod is a non-projective uniserial module,
then

α(U) ≤ length(socDTrU) + 1 .

Proof. Let 0 → DTrU → B → U → 0 be an almost split sequence.
Then 0 → socDTrU → socB → socU is left exact. Therefore,

α(U) ≤ length(socB)

≤ length(socDTrU) + length(socU)

= length(socDTrU) + 1 .

�

The following proposition gives more precise information.

Proposition 6.3. Let 0 → DTrU
f−−→
⊔
i∈I Bi

g−→ U → 0 be an
almost split sequence where U is a uniserial module and the Bi are
indecomposable.

(i) At most one of the induced maps gi : Bi → U is a monomor-
phism.

(ii) If Bi
gi−−→ U is an epimorphism and socBi is simple then

socBi ⊆ f(socDTrU).
(iii) Let I ′ = {i ∈ I | gi : Bi → U is an epimorphism} . Then |I ′| ≤

length(socDTrU).
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Proof. (i) Suppose g1 and g2 are monomorphisms. Using Proposi-
tion 3.1 again, we have B1

∼= JU and B2
∼= JU . The induced irre-

ducible morphism B1 tB2 → U cannot be an epimorphism and there-
fore is a monomorphism and B1 tB2

∼= JU , which is impossible.
(ii) We have socBi ∩ kern(gi) 6= 0 since kern(gi) 6= 0 and socBi

is essential in Bi. But socBi is simple, so socBi ⊆ kern(gi). We

know that 0 → socDTrU
f̄−−→
⊔
i∈I socBi

ḡ−→ socU is exact. Hence
socBi ⊆ kern ḡ = im f̄ . Therefore, socBi ⊆ f(socDTrU).
(iii) We distinguish two cases:
Case 1: There is an i such that gi is a monomorphism. Then

|I ′| ≤ α(U)− 1 ≤ length(socDTrU)

by Proposition 6.2.
Case 2: For each i ∈ I, the map gi is an epimorphism. We consider the

exact sequence 0 → socDTrU
f̄−−→
⊔
i∈I socBi

ḡ−→ socU and we use
(ii): if socBi is simple for all i, then f̄ is an isomorphism and we get

|I ′| = α(U) = length(soc
⊔
i∈I

Bi) = length(socDTrU) .

If however at least one socBi is not simple, then the same exact se-
quence gives

|I ′| = α(U) ≤ length(soc
⊔
i∈I

Bi)− 1 ≤ length(socDTrU) .

�

Let e, f be primitive idempotents in Λ. For a non-zero element a ∈
fJe, the Λ-module Λe/Λa is indecomposable and non-projective. We
are interested in the case where this module is a uniserial module and
consider the almost split sequence ending in Λe/Λa.

Proposition 6.4. If U = Λe/Λa is a uniserial module, then α(U) ≤ 2.

Proof. Λf
.a−−→ Λe→ Λe/Λa→ 0 (where .a denotes the right multipli-

cation by a) is exact and is the start of a minimal projective presen-
tation of Λe/Λa. From [2, Proposition V.6.1] we have that the middle
term B in the almost split sequence δ : 0 → DTrU → B → U → 0
has a decomposition B = B′ t B′′ with B′ indecomposable and such
that if B′′ 6= 0, the induced morphism g′′ : B′′ → U is an irreducible
monomorphism. But, by Proposition 3.1, B′′ ∼= JU is indecomposable
and therefore α(U) ≤ 2. �
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Uniserial representations of left multiserial algebras are studied in
[11]. Here we find an upper bound for α(U) where U is a uniserial
module over a left m-multiserial algebra.

Theorem 6.5. Let U be a non-projective uniserial module over a left
m-multiserial algebra Λ with m ≥ 2. Then α(U) ≤ m.

Proof. By [11, Remark 2.3], we can assume that Λ = KΓ/I such that
Λα is uniserial for every arrow α in Γ1. Suppose p is a mast for U
and let α1 be the first arrow of p. Let A = {Λγp | γ ∈ Γ1}. Any two
members of A are comparable; i.e., for γ1, γ2 ∈ Γ1, either Λγ1p ⊆ Λγ2p
or Λγ2p ⊆ Λγ1p, since Λα is uniserial. Hence there exists a greatest
element in A, say Λγp. Notice that Λγp can be zero. This happens
when Jp = 0.
Case 1: There is no arrow leaving e := s(p) except α1. Here Λe is
uniserial, we have U = Λe/Λγp and since U is not projective, γp 6= 0.
Therefore α(U) ≤ 2 ≤ m by Proposition 6.4.
Case 2: There are arrows β1, . . . , βl, δl+1, . . . , δn leaving e except α1.
Assume (βj, e) oo p (1 ≤ j ≤ l) and δte (l + 1 ≤ t ≤ n) are non-
routes on p. Note that n < m, since Λ is m-multiserial. Let bj =
βj −

∑
i∈I(βj ,e)

ki(βj, e)vi(βj, e) and bt = δt. If Λγp = 0, then U =

Λe/
∑n

i=1 Λbi. Otherwise U = Λe/(
∑n

i=1 Λbi + Λγp). Let 0 → DTrU
f−−→⊔

i∈I Bi
g−→ U → 0 be an almost split sequence. By Proposition 3.3,

all the induced irreducible maps gi : Bi → U are epimorphisms. By
Proposition 6.3(iii), α(U) ≤ length socDTrU . But by [2, Proposition
IV.1.11], we know that socDTrU ∼= P1/JP1 where P1 → Λe→ U → 0
is a minimal projective presentation of U . Therefore α(U) ≤ m. �

When Λ is left 1-multiserial, i.e., left serial, and U is uniserial then
the proof of Theorem 6.5 shows α(U) ≤ 2.

Corollary 6.6. Suppose U is a non-projective uniserial module with
mast p over a left m-multiserial algebra Λ. Then

(i) If there is only one arrow leaving e = s(p), then α(U) ≤ 2.
(ii) If m = 2 (for example, when Λ is a left biserial algebra), and

Jp = 0, then α(U) = 1.

Proof. Part (i) follows from the proof of the above theorem. In part
(ii), let α1 be the first arrow of p. Then, there is an arrow β 6= α1

starting at e = s(p). Thus, either (β, e) oo p or βe is a nonroute on p.
If (β, e) oo p, then U = Λe/Λb, where b := β −

∑
i∈I(β,e) ki(β, e)vi(β, e).

If β is a nonroute, then U = Λe/Λb, where b := β. In both cases then,

α(U) = 1 by [2, Proposition V.6.3], because the image of Λf
.b−−→ Λe is

not in J2e, where f = t(β). �
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