ON UNISERIAL MODULES IN THE
AUSLANDER-REITEN QUIVER

AXEL BOLDT AND AHMAD MOJIRI

ABSTRACT. This article begins the study of irreducible maps in-
volving finite-dimensional uniserial modules over finite-dimensional
associative algebras. We work on the classification of irreducible
maps between two uniserials over triangular algebras, and give es-
timates for the number of middle terms of an almost split sequence
with a uniserial end term.

1. INTRODUCTION

The study of finite-dimensional uniserial modules over finite-dimen-
sional associative algebras was begun in earnest by Huisgen-Zimmermann
in [8]; Huisgen-Zimmermann and Bongartz achieved a description of
uniserial modules in terms of certain varieties in [5]. In the present arti-
cle, which is based on the authors’ theses [3] and [13], certain questions
regarding the position of uniserial modules in the Auslander-Reiten
quiver of finite-dimensional algebras are investigated; most of the work
applies to basic split triangular algebras only.

The article is organized as follows. In Section 2 we fix our notation
and conventions and recall the basic description of uniserials via vari-
eties. In Section 3 we present a general result that motivates much of
the following work: any irreducible map between two uniserials is either
the radical embedding or the socle factor projection of a uniserial mod-
ule. The two cases being dual, we go on to state a conjecture giving a
concrete necessary and sufficient condition for a uniserial over a trian-
gular algebra to have an irreducible radical embedding. The sufficiency
of this condition is proved using the technique of quiver representations.
The necessity of one part of the condition is then proved in a slightly
more general context.

We have not yet managed to prove the necessity of the full condition
for all triangular algebras. In Section 4 we prove it under an addi-
tional assumption, which includes the case of all triangular multiserial
algebras. In Section 5 we prove it for all monomial algebras.

The authors are grateful to Professor Walter D. Burgess for his valuable
suggestions.
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In Section 6 we study a general finite-dimensional algebra and focus
on a different circle of questions: almost split sequences with a uniser-
ial end term. First we give a simple general result: any short exact
sequence with uniserial end terms has a middle term which is either
indecomposable or a direct sum of two uniserials. Then we study the
number of indecomposable middle terms in an almost split sequence
ending in a uniserial module; an upper bound is given for multiserial
algebras.

2. NOTATION AND PRELIMINARIES

Throughout, K will be a field and I" will be a finite quiver with vertex
set I'g and arrow set I'y. We compose arrows, paths and maps from
right to left: if p: e — fand ¢ : f — ¢ then gp : ¢ — g. The
starting point of the path p is denoted by s(p) and its end point by
t(p). A = RI'/I will be a finite-dimensional K-algebra presented as the
quotient of the path algebra of I' by an admissible ideal I. A is called
triangular if I' does not contain any directed cycles. Whenever useful,
we identify elements of 'y and paths in I' with their corresponding
classes in A.

The category of finitely generated left A-modules is denoted by A- mod.
The direct sum of two module M and N is denoted by M LIN. A mod-
ule is called uniserial if it has only one composition series with simple
factors. If U € A-mod is uniserial with length n, then there exists a
path p in I" of length n — 1 and an element x € U such that pz # 0.
Any such path is called a mast of U and any such element x is called
a top element of U. The terminology is that of [8].

Let p be a path in I'. A path u is a right subpath of p if there exists
a path r with p = ru. Following [8], a detour on the path p is a pair
(cv, u) with @ an arrow and u a right subpath of p, where v is a path in
' which is not a right subpath of p, but there exists a right subpath v of
p with length(v) > length(u) + 1 such that the endpoint of v coincides
with the endpoint of a.

We will abbreviate the statement “(c, u) is a detour on p” by («, u) Q
p. Given any detour on p, let V(a,u) = {v;(a,u) | i € I(cr,u)} be the
family of right subpaths of p in K" which are longer than « and have
the same endpoints as a.
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Now suppose p has length [ and passes consecutively through the
vertices e(1),...,e(l 4+ 1) (which need not be distinct). A route on p is
any path in I" which starts in e(1) and passes through a subsequence
of the sequence (e(1),...,e(l 4+ 1)) in this order and through no other
vertices. Given any uniserial module with mast p and top element =,
if (a,u) Wp, then aux = 3,1, ki(o, u)vi(a,u)z for unique scalars
ki(a,u). By [8], the points (k;(r,%))icr(a,u), (auup corresponding to
uniserials with mast p form an affine variety, called V,, which lives in
A" where N = > (@uup [ (@, u)|. Moreover, there is a surjective map
®, from V, onto the set of isomorphism types of uniserial A-modules
with mast p. It assigns to each point k& = (k;(a, u))icr(aw),(@uwup i Vp
the isomorphism type of the module Ae(1)/Uy, where

Up = Z Al ou— Z ki(o, w)vi(o,u) | + Z Age(1).

(a,u)p i€l (ayu) g non-route on p

3. IRREDUCIBLE RADICAL EMBEDDINGS OF UNISERIALS

In this section, we first show that the only irreducible maps between
uniserial modules are certain radical embeddings JU <— U and socle
factor projections U — U/socU. Then for a triangular algebra A =
RU'/1, we propose necessary and sufficient combinatorial conditions
for the radical embedding JU <— U of a uniserial module U to be
irreducible.

Proposition 3.1. Let R be a left artinian ring with Jacobson radical
J.

(1) If f: M — U s an irreducible injective map from the module
M € R-mod to the uniseral U € R-mod, then there exists an
isomorphism ¢ : JU — M so that fo is the natural radical
embedding JU — U.

(2) If g: U — M 1is an irreducible surjective map from the uniseral
U € R-mod to the module M € R-mod, then there exists an
isomorphism ¢ : M — U/socU so that 1pg is the natural socle
factor projection U — U/socU.

Proof. (1) Since im(f) is a proper submodule of Uy, im(f) = J'U;
with [ > 1 and M = J'U; via f. However, if [ > 1, then J'U; —
J'=1U; — U; would be a non-trivial factorization of J'U, — U;, giving
us a factorization of f, which is impossible. The proof of (2) is similar
to that of (1). O
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Since every irreducible morphism is either injective or surjective, the
only irreducible maps between two uniserial module are among radical
embeddings JU — U and socle factor projections U — U/soc U. Since
the two cases are clearly dual, we will focus on radical embeddings in
the sequel.

Now assume that A = KI'/I is a triangular algebra. To prepare for
our analysis in this section, we fix a finitely generated uniserial left
A-module U with mast

o a1 g Qn—1
p=1—702—" ... — n.

On several occasions, we will refer to certain subpaths o ---«; of p;
whenever i < j, this expression will simply stand for 1. We now name
all the arrows in I' that touch p, classifying them according to the type
of contact with p.

B :={B el |s(B)e{l,....n—1} and t(8) ¢ {1,...,n}},
B = {3 el |s(3)=n},

C :={y €Tl |s(v) €{1,....,n} and t(y) € {2,...,n}},
C':={y el |t(y) =1},

D :={5 €Ty |{s(0),t(8)} c{1,...,n} and 6 & {a1,..., 1} }.

For an illustration of these definitions with an example, consider the
following quiver I, together with the path p = azasag:

61

N
VNN

o

[ \/z

2 a3
8%
We then have

B = {6}7 B = {ﬁivﬁé}v C= {7}7 ' = {7/}7 D= {61752}'
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Observe that, in general, our uniserial module U may be identified
with a representation U = ((U,), (fa)) of I', where

U - R, ifxe{l,...,n};
e 0, otherwise

and

fo, =1id for everyi e {1,...,n—1}.

The module U is then completely determined by the choice of the mast
p and the scalars f5(1) for § € D, different sets of scalars corresponding
to non-isomorphic modules. Unlike the hereditary case, not every path
is a mast, however, and not every set of scalars appears in this fashion,
since the relations in / impose restrictions.

We know from 3.1 that, in order to understand irreducible maps be-
tween uniserial modules, it is sufficient to study radical embeddings
(and their duals, socle factor projections). The following conjecture
covers this situation; we manage to prove “(2) = (1)” and a generaliza-
tion of “(1) = (2)(a)” in the sequel. We will also prove “(1) = (2)(b)”
for monomial and for multiserial algebras.

Conjecture 3.2. [3, Conjecture 1.2.1] Suppose A is a triangular al-
gebra and U is a uniserial A-module with mast p. Then the following
statements are equivalent:
(1) The embedding JU — U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:
(a) For every € B,
Basg)-1 a1 € JIp,
and for every 0 € D,
d0(5)—1 - 1 € Ray(sy—1 + - Q1.
(b) There exists a subset R C J such that {rp+ J*p | r € R} forms
a R-basis for Jp/J*p and (i) and (ii) both hold:
(1) For every v € C there exists w € pJ such that, for everyr € R,
P01 Qy(y)Y = TW.
(77) For every 6 € D and every r € R,
TOp_1 - - Q)0 € ATy, - - - Qg(s).-
Proof of 42) = (1)". Let V= ((V%), (9a)) € A-mod and suppose there
exist A-linear maps

d=(d, U=(V,
JU (@) V ) U
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such that W& is the embedding JU — U.

Observe that we can assume without loss of generality that the ele-
ments of the set R arising from condition (2) are normed in the follow-
ing fashion: r = ey )re, for certain vertices u(r) € I',. We can thus
denote by g, the K-linear map V,, — V,(;) induced by left multiplica-
tion by r.

Note furthermore that we can strengthen the conditions on § € D in
the following manner:

5065(5)—1 T = fé(l)at(6)—1 e

and for every r € R

P01 Q)0 = fs(1)ram—1 - - ags).-

The first equation is clear, and the second one follows then from
TOp_1 - Q(5)00s()—1 - - oq = fs(1)ram_1 -

since rp # 0 for r € R.

Case 1: There exists v € Vi with V1(v) =1 and (¢:9a,_, " Goy ) (V) =
0 for allr € R.

Our goal is to construct a section x for ¥ in this case. First observe
that (9s9a, 1+ Gay)(v) = 0 for all §" € B’ as well, because Jpv C
>, Rrpu + J*pv = J*pv implies Jpv = 0.

Define x = (xz) : U — V by

Xi(1) =(ga;_yay)(v)  forie{l,... ,n} and
Xz =0 forx & {1,...,n}.

Once we have checked that x € Homy (U, V'), the equality Wix;(1) =1
will clearly imply Uy = id, completing the treatment of the first case.
So let us check that y is A-linear. That gu,xi = Xi+1 = Xit+1fa, for
i€ {l,...,n— 1} is clear; moreover, we compute

95Xs5)(1) = (9590051 *** Gar ) (V)
= fﬁ(l)(gat@),l T goq)(v)
= Xu(0)f5(1)-

Now let 3 € BU B’. Then (fog@)-1---ai1)(v) € Jpv = 0, and again

9oxs(8) = 0 = Xu(9) fo-
Case 2: For every v € Vi with Wi(v) = 1, there exists r € R with

(grganA o 'ga1>(v) 7é 0.
In this case, we will construct a retraction y for ®. First we note that
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there exist linear maps w, : V) — R for r € R such that

\Ijl = Zwrgrgan_l Gay -
reR

Define x = (x,) : V — JU by

Xi =VYi—>  cprWrban_iwa  forie{l,... ,n}and
Xe =0 for x & {1,...,n}.

Again we need to check that y is A-linear. For that purpose, we com-
pute x1 = 0,

foXi = Vit1go, = O @rGrGan_rmcis ) o,
reR

= Xi+19«;

forie{1,...,n—1}, and

TsXs) = V)95 — f5(1) Zwrgrgan,l-..as@
reR

= Wy5)95 — Zwrgrgan—l---at(a)gls
re€ER
= Xt(6)9s

for § € D. In addition, we obtain x1g, = 0 = f,/Xsy) for v € C". If
~v € (', then we can clearly assume that the corresponding element w €
pJ from condition (2)(b)(i) has the form w = pw’ with w’ € e Jeg),
and it follows

hi) Gy = fy¥s(y) — Zwrgrganflmat(w)gw
reR

=0~ E Wr Gy 1) G’

reR
= -0

= _fw"IlS(”/)
= 0= fyXstm)-
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Hence y belongs indeed to Homy (V, JU). That x® = id y is a conse-
quence of the following computation:

XQ@Q(].) = \112(132(1) — Zw'f‘grgan—l"'a2q)2(1>

reER

=1— Zwréu(r)frfan_l..,az(l)
reR
=1.

Thus @ is a split monomorphism in the second case, which shows that
the inclusion JU < U cannot be factored nontrivially. U

The implication (1) = (2)(a) is proved in [3] using the representa-
tions of algebras. In the sequel, we will generalize (1) = (2)(a), by
weakening the assumption that the quiver has no oriented cycle and
use the language of modules. The following result (which does not as-
sume that A is triangular) gives a first necessary condition for JU — U
to be irreducible.

Proposition 3.3. Let U be a uniserial A-module with mast p. Then
JU — U cannot be irreducible if there is an arrow leaving e := s(p)
besides the first arrow of p.

Proof. (i) Suppose p = p'3 with § € I'; and U = Ae/ K where

K=Y Aldu— > k(Gwu@u) |+ > Ag.
( )

d,u)p €l(d,u q nonroute on p

Let o # [3 be an arrow leaving e. Then either («, ¢)2p or a is a nonroute
on p. Here, we assume (o, e) Q@ p and we will prove that JU — U is

not irreducible. The proof for the case where a is a nonroute on p is
similar. Let V = Ae/L with

L= > Aou— > k(Guwu@u) |+ > Ag.

(8,u)up, (6,u)#(ase) i€l(d,u) q nonroute on p

We prove that JU — U factors nontrivially through V. Indeed
JU 45 v 22U,

where p(f+ K) =0+ L and ¢¥(e+ L) = e+ K. Then ¢p = idp.

Claim 1: ¢ is not a split monomorphism. Otherwise, suppose y: V —
JU is a splitting of ¢. Then (e + L) = kywy + -+ + kyw, + K where
wy, ..., wy are right subpaths of p with t(w;) = e and w; # e for all
i. But we have x¢ = id. Thus, x¢(8 + K) = f + K. Therefore
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kipw, + - + kPw, + K = 3+ K. Then, 8 € J*U, which is a
contradiction.

Claim 2: % is not a split epimorphism. Otherwise we would have
x1: U — V such that ¢x; = id. Hence y1(e+ K) = (le+ >, l;w;) + L,
where [,[; € R and each w; is a nontrivial path with t(w;) = e. Then,

e+ K=¢xi(e+ K)=1v¢ ((le—l—Zliwi)—l—L) :(le+Zliwi)+K

Therefore | =1 and ), Liw; € K. Let w :=)_. ljw;, k; := k;(v, e) and
v; == v;(a, e). Then, x1(K) =

(0= > kw)+K)=(a— > kvi+(a— Y  kv)w|+L.

i€l(a,e) i€l(a,e) i€l(a,e)

Therefore,

E:k:vZ Zkv,wEL

i€l(oe) i€l(a,e)

This is a contradiction, since L is generated by paths of length greater
than one or not starting with a. O

Definition 3.4. [11] A detour (o, u) on a path p is called inessential

if
au = s+ Z kvi(a, u)
i€l (a,u)
in A, where s is a K-linear combination of paths, none of which is a

route on p, and k; € K for all ¢ € I(a,u). A detour is essential if it is
not inessential.

The following result generalizes Conjecture 3.2 (1) = (2)(a), by
weakening the assumption that the quiver has no oriented cycles.

Theorem 3.5. Let U be a non-simple uniserial module with mast p,
where p does not start with an oriented cycle. If JU — U is irreducible,
then

(i) All detours on p are inessential.
(ii) All non-routes are in Jp.

In particular, U = Ne/Jp with e = s(p).

Proof. Recall from Proposition 3.3 that no detour or non-route starts
at e = s(p). Let p = a,, -y and suppose (d;,u;) W p for 0 < i < m.
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Let Np=>_ Age and

g nonroute on p

Aj =duj — Z ki(0,w;)vi (05, uj) .

1€I(d;,u;)

Proof of (i): We first assume that 8 # Z,. Suppose U = Ae/K, where
K = 770 AAj + Ng, with m minimum. If m > 0, let U' = Ae/L
where L = Z;’;Q AA; + JA; + Ng. Notice that eJe C Ng by our
assumption on p; hence eU’ = (Re + L)/L. Let
uuJu
V= —
where H = A(p+ L,kp+ L) + A(Ay + L, Ay + L) with 0,1 # k € R.
We have
JU~-v v,
where (a1+K) = (aq+L, a1 +L)+H and ¢ ((e+L,0+L)+H) = se+ K
and Y((04+L,an + L)+ H) = lag + K, with s, € R such that s+1 =1
and s + [k = 0. Note that such elements exist, since K # Zs.
1. ¢ is well-defined:

oA+ K)=(AM+ L, A+ L)+ H=H.

2. 1 is well-defined: We have ¥((p+ L, kp+ L)+ H) = sp+1lkp+ K =
0+ K,and (A + L, A+ L)+ H)=sA+IA +K =0+ K.
3. w@:idJUi

wgo(al—l—K):w((a1+L,a1+L)+H):sa1+la1+K:a1+K.

4. ¢ is not a split monomorphism: Otherwise there would exist x €
Homy (V, JU) such that xp =id. Then x((e+ L,0+ L)+ H) =0+ K.
Hence,

a1 +K = xp(an+K) = x((ea+L,on+L)+H) = x((0+L,on+L)+H) .
Then x((0+ L,on + L)+ H) = oy + K. Therefore, x(H) =
X((p+Lkp+ L)+ H) = x((p+L,L)+H)+x((L,kp+ L) + H)

kp+ K # K,

which is a contradiction. Therefore, 1 splits; i.e., there exists y; €
Homy (U, V) such that ¢x; = id. Hence x;(e+K) = (s 'e+ L, L)+ H

because of the assumption that p does not start with an oriented cycle.
Then,

xYi0+K)=xi(A+K)=(s'Ay+L,L)+H=H.
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Then, (s7'A; + L,L) € H. Hence,
(s7'Ay + L, L) = 2(p+ L kp+ L) + 2'(Ay + L, Ay + L),
with z, 2" € A. Therefore we have

sTIANV+L = zp+ 2N + L,
L = kzp+ZA +L.
Then, s 'A; + L= (1—k)zp+ L. Hence Ay — s(1 — k)zp € L. Thus
Ay —s(1 —k)zp = D0, iy + vAL + w with p; € R v € J and
w € Ng. Then s(1 — k)zp € K. This implies zp € Jp, since pU # 0.
Hence Ay € L. This is in contradiction with the minimality of m.

Now suppose R = Z,. With the same notation, let

v uJuuJu
V = I ;

where H =A(0+L,p+ L,p+ L)+ A(Ay+ L,Ay + L,A; + L). Then
as in the previous case,

JU v LU,

is a nontrivial factorization of JU < U through V', where p(a;+ K) =
(m+L,on+L,a;+L)+H and ¥((e+ L,0+L,0+L)+H)=e+ K,
Y((0+L, a9 +L,0+L)+H) =1+ K and ¥ ((0+L,0+ L,y +L)+H) =
a1+ K.

Proof of (i1): Again first assume that 8 # Zy. By part (i), U = Ae/K
where K =3, ABju; + Jp, and each Ju; is nonroute on p with u; a
right subpath of p, §; € I';. Assume m is minimum. If m > 0, then let
U= Ae/L where L = (31", AfBju; + Jp) and

U uJu
V= 7
where H = A(p + L, kp + L) + A(fruy + L, f1uy + L) for some k €
R,k #0,1. We have
JU v 24U,

where p(a; + K) = (g + Lyag + L) and ¥((e+ L, L) + H) = se + K,
and Y((L,on + L)+ H) = lay + K with s,] € 8 such that s+ =1 and
s+ kl =0. Asin (i) we can see that ¢, are well-defined )¢ = idy,
and ¢ is not a split monomorphism. Therefore v is split; i.e., there is a
X € Homy (U, V) such that ¢x = id. Hence x(e+ K) = (s"te+ L, L)+
H. Then

X(K) = x(Biuy + K) = (s 'Byuy + L, L) .
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Therefore, (s *Byu1 + L, L) = w(p+ L, kp+ L) +w'(Byus + L, Byus + L)
where w,w’ € A. Hence,
s1Bu+L = wp+w'Bius + L,
L = kwp+wpu + L.

Therefore s™*fyuy + L = (1 — k)wp + L. Hence

(1) s Prun + (b — Dwp = vp + Z w;fiu;

=2

where v € J and w; € A. If we multiply equation (1) by t(5;) from the
left, we get that t((;)wp is zero or a nonroute on p, since t(3;) # t(p).
Then equation (1) is in contradiction with the minimality of m since
it expresses (1u; as an element of L.

Now suppose that 8 = Z,. With the same notation, let

Vo v uJu uJu
- 7 ,
where H = A(O+ L,p+ L,p+ L) + A(Gyuy + L, Bruy + L, fyuy + L).
We have

JU v U,
where p(a; + K) = (a1 +L,a1+L,an + L) and Y((e+ L, L, L)+ H) =
e+ K, p(Lyon+L,L)+H) = on+K and ¥((L, L,on+L)+H) = a; + K.
Similarly, this is a nontrivial factorization of JU < U through V. [

Example 3.6. In order to provide a better understanding of the differ-
ent cases that would have to be dealt with in a proof of “(1) = (2)(b)”,
we include here a series of examples where condition (2)(b) of Conjec-
ture 3.2 is violated. A non-trivial factorization of the radical embedding
is given in each of these cases.

(a) Suppose I' is given by
o
2

N
51&/\252

5

with relations 1y = (Boa; and (G171 = 0 = Boy2. Here U is the unique
uniserial with mast «;. The embedding JU <— U can then be factored



ON UNISERIAL MODULES IN THE AUSLANDER-REITEN QUIVER 13

non-trivially through a module with graph

(b) Now T is given by

51

with relations €372 = [17 and By = 0 = feay. Again, U is the
unique uniserial with mast ;. In this case, the radical embedding can
be factored through the indecomposable with graph
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(c) Consider the quiver I'

with relations foa; = (g and Gy = 0. The radical embedding
of the uniserial with mast asa; can be factored through the following
indecomposable module:
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and consider the relation d;q; = ooy, We can factor the radical em-
bedding of the uniserial with mast asay through the module

1
2 2 2
\
! 51
3/3

Remark 3.7. In order to tackle the remaining implication “(1) = (2)(b)”
of Conjecture 3.2, it is convenient to have the following reformulation
of condition (2)(b) at hand:

(2)(b") There exists a family (w,) € (pJ)°, such that for every x €
Lo and p € eyJp/e.J*p, we can find v € eyJe, with u = rp +
exJJ?p and ro,_q - - Q(y)Y = 1wy for all v € C and roy,—q -+ ay5)0 €
Kray_i - oy forall 6 € D.

Assume that condition (1) holds, i. e., that the canonical embedding
JU — U is irreducible, and that (2)(b’) is violated. We then get, for
every family (w,), a special vertex = and an element p € e, Jp/e,JJ*p
from the negation of this statement. Since (2)(a) holds, this allows us
to “lengthen” U to a uniserial module U in such a fashion that U is
an epimorphic image of U and socU ~ Ae,/Je, (note however that
there is a choice involved: U is not uniquely determined by U and 1).
Here are two potential approaches to the construction of a module M
through which the radical embedding of U factors non-trivially:

(a) Let M be the module obtained from gluing the socles of U and
D(e(z)A) (where D = Homg(—, &) denotes the usual duality). The
problem then is to find a “good” map from JU to M.

(b) This time, we begin by gluing the socles of U and JU together to
obtain M; this allows for a natural embedding of JU. Of course, this
particular embedding splits, and we have to extend M to a module
M having M as an epimorphic image in order to prevent this from
happening.

4. THE CASE OF LEFT MULTISERIAL TRIANGULAR ALGEBRAS

Throughout this section we assume that the algebra A is a triangu-
lar algebra. In this section, using approach (b) from above, we will
show that Conjecture 3.2 is true whenever the mast p has the following
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additional property:
dimg (Jan_l/JQan_l) <1.

In this section, we will assume that A is triangular, i.e. that I" has
no oriented cycles.

Lemma 4.1. Let U be a uniserial module with mast p and (' be an
arrow. If JU < U is irreducible and 5'p # 0, then there is a uniserial
module with mast 3'p.

Proof. There is a basis {Bip + J?p | 1 < i < m, 3 € Ty} for Jp/J?p,
with ) = 3. Let

a1 a2 Qn—1
p=1—2—"3 --- —n,

and n+1 :=t(4'), ¢ := f'p and suppose (§,u)Qq. Ift(6) € {1,2,...,n},
then (6, u) W p and so by Theorem 3.5(i), du € Kaygy—1--- . If t(6) =
n 4+ 1, then by Theorem 3.5(ii), du € Jp. Hence,

(2) du=UBp+ LB+ -+ lLL,p+wp,
with w € J%,1; € &. If for some 8 € I'y, Su is a nonroute on ¢, then it

is a nonroute on p as well and so fu € Jp and t(5) ¢ {1,...,n+ 1}.
Hence, in this case, fu € 31", RBp + J?p. Define V = Ae/L, where

(3) L:= Jq—i—ZAﬁ;p—i— Z A (du —l1q) .

=2 (6,u)g, t(0)=n+1
Thus, V' is a uniserial module. We only need to show that ¢V # 0.
Suppose gV = 0. Then, ¢ € L and by equations (2) and (3), we get
q€ Jqg+ >, ABip+ J*p. Then,

(4) q:vq—i—Z)\i D+ w'p,
i=2
with v € J,\; € A and w' € J2. Multiply equation (4) by t(4'). Since
the quiver does not have oriented cycles, vqg = 0, which contradicts the
choice of the basis of Jp/.J?p.
O

Lemma 4.2. Suppose dimg Joy,_1/J?a,_1 = 1. Then there erists an
arrow (" such that R a,_1 + JB a1 = Jay,_1.

Proof. By the hypothesis there is some ' € T'y with f'a,_1 ¢ J2a,_;.
We will show that J?a,,_; = JB'a,_. For this we only need to show
that any path in J2a,_; is in J@a,_1. If not, let ¢ be a longest
path in J?a,, 1\JBFa,_1. Then ¢ = v, y10,_1, where 7; € I'; and
Yo,y & J?a,_1, otherwise ¢ could be replaced by a longer path.
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Hence via,—1 = kf'ay_1 + way,—1, where 0 # k € & and w € J%
Therefore,

q="Yr N1 =kY Yl a1+ Y Yowa, 1.

Since 7, - - - Yawa,_1 is a linear combination of paths in J?a,_; longer
than ¢, and therefore 7, - - - ypway,_; € JF'a, 1 and so is ¢. This is a
contradiction. O

Theorem 4.3. Let A be a triangular algebra and U be a uniserial A-
module with mast p = a1+ -+ «y. Ifdimg Jay,_1/J?a,_1 < 1, then the
following statements are equivalent:
(1) The embedding JU — U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:
(a) For every B € B,

ﬁas(ﬁ)fl g € ']p7
and for every 0 € D,
dorg(s)—1 - - a1 € Rayysy—1 - Q1.

(b) Jp/J*p = 0 or there is an arrow (' such that {3'p + J*p}
forms a R-basis for Jp/J*p and (i) and (ii) both hold:
(i) For every v € C there exists w € pJ such that

ﬁ/an—l e O‘t(»y)’)/ — ﬁ,w .
ii) For every § € D
(ii) y

Ban_1- a0 € RB a1 -+ - Q) -

Proof. Note first that, under the present hypotheses, the conditions
(2) are equivalent to those in Conjecture 3.2. The conditions (2)(a) are
identical.

We have that dimg Ja,,_1/J*a,_1 < 1so that, by Lemma 4.2, we can
take the set R of Conjecture 3.2(2)(b) to be {3'p + J*p} or f. Then
Conjecture 3.2(2)(b)(i) and (ii) reduce to the corresponding parts of
this theorem.

(1) = 2)(b)(i):

Suppose Jp/J?p # 0. Let 3'p € Jp\J?*p with 3’ € I';. Then B, €
Ja,_1\J?a,,_1 and {B'a, 1+ J?a,_1 } is a basis for Ja,,_1/J?a, 1. We
will show that for v € C, f'ay—1 - ayyyy € B'pJ. By (2)(a), we know
that U = Aey/Jp where e; = s(p). Let ¢ = f'p and K = Jp. By
Lemma 4.1, there exists a uniserial module U, = Ae;/L with mast g,

where
L=Jg+ > (u—10u)q).
(6,u)1p, t(8)=t(q)
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Let
U, U JU, U Ae,
H )
where H = A(q + Lv q+ Lv 0) + A(L7 Qp—1--0q + L, Qp—1° " O-/t('y)IY)
with e, = s(7y).

V:

U,

a1

JU,  Ae,

e

Notice that e; V' = K(e1+ L, 0, )+ H, where z is a linear combination
of paths from s(y) = e, to ;. We have

JU v LU,

where (o + K) = (a1 + L,y + L,0)+ H and ¢((e; + L, L,0)+ H) =
e1 + K, ¥((L,ay + L,0)+ H) =0 and ¢¥((L, L,e;) + H) = 0. Then, ¢
and v are well-defined, ¢y = idy.

Claim: ¢ is not a split monomorphism; otherwise there would exist
x: V — JU such that xp = id. We have ay + K = x¢(oy + K) =
X(Oél +L, aq +L, 0) = X(Oél +L, L, O) +X(L, Qaq +L, 0) = X(L, Qg +L, 0),
because x(e; + L, L,0) = 0. Also we have x(L, L,e;) = 0. But x(H) =

X((Ly o1+ -on+ Loy - ouyyy) + H) = o - - gy + K # K,

which is a contradiction. Therefore v splits, i.e., there exists x; : U —
V, with ¢y = id. We have xi(e1 + K) = ((e1 + L, L, > " | kyw;) + H),
where w; are the paths from e, to e; and k; € K. But ¢ € K and so

=1

Hence,

(Q+L7 La Z kzqwz) S A(Q+L7 Q+L7 0)+A(L7 Qp_1- a1+L7 Ap_1- O‘t('y)IY) .

=1
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Then, by Lemma 4.2 (¢+ L, L,> " | kiqw;) =

k(q + L7 q + La O) + lﬁl(La Qp—1 -0+ L, Op_1- - at(’y)/)/))
+ Z liwiB'(Ly a1y + Ly - Qi)Y)
where k,[,l; € R. Therefore k =1 and [ = —1. Hence,
(*) Blap_q-- Qg(y)T = — Z kil a1 -+ - aqw;— Z liwi 3oy - - T Q(y)Y -

l(ui)>1

If we multiply (x) from the left by t(/5’); using the fact that quiver does
not have oriented cycles, t(3")u; = 0. Then,

Bt oyyy = — Z ki ap_y -+ oqw; € f'pJ .
(1) = (2)(b)(ii):
Suppose 6 € D. We will show that 3o, —1 - - (50 € R a1 - - - g5y
Let 6: 4 — j and ¢ := f'ay—1--- . Again let U, = Ae/L be the
uniserial with mast ¢, with L as above. Let
Uq LJ JUq L A@Z‘

V= 7 ,

where
H = A(q+L, q+L, O)"’A(L, Qp_1°"- 061—|—L, Op_1* " Oéjé)"—A(L, L, A1 Oéi) .

We have
JU v LU,

where p(a; + K) = (a1 +L,0qn +L,0)+ H and ¢((e; + L, L,0)+ H) =
e1 + K, ¢¥((L,ay + L,0) + H) = 0 and ¥((L, L,e;) + H) = 0. Then, ¢
and v are well-define and ¢y = idy.

Claim: ¢ is not split monomorphism; otherwise there would exist
x: V — JU such that yp = id. Then we would have a; + K = xp(a;+
K) = X((al —|—L,CY1 +L70> +H) = X((al +L>L7O) +H) +X((L7041 +
L.0)+H)=x((L,as + L,0) + H), because x((e; + L, L,0) + H) = 0.
Also we know that x((L, L,e;) + H) = ka;_1 -+ -a; + K, where k € K .
Thus, x(H) = x((L, L, 1 - - ;) + H) = kay,_q - - - oy + K. Therefore,
k=0. But

X(H)=x((L,op-1---a1+L, a1 ;j0)+H) = a1 oo +K # K,

which is a contradiction.
Therefore, 1 splits, i.e., there exists x; : U — V with ¥y; = id. We
have xi(e1 + K) = (ex + L, L,0) + H. Hence xi(K) = xi(q + K) =
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(g1 + L, L,0) + H. Therefore,

(Q+LaLa0) € A(q+Laq+L70)+A<L7an—1"'a1 +Laan—1"'aj5)
+ A(L, L, A1 Oéz'> .
Then by Lemma 4.2
(Q+L, L,O) = k<q+L7Q+L70)+l6/(L7 Qp—1-*" '051+L704n71 o 'aja)
+ Z LsusB' (L, oty -~ 0n + Lyapq -+ - 0)
I(us)>1
+ U(La LJ (0779 I Oéi) )
where [, 1, € R, us € J and v € A. Hence k =1 and [ = —1. Therefore,
() g5 = Blonr 08 = 3 Lty -6+ vy -0,
I(us)>1
in Ae;. If we multiply (%) from the left by t(3'); using the fact that
there are no oriented cycles, t(5")u; = 0. We get
Bl a0 =t )vag_1 .
Then (8 )va,,_1 € Ja,_1. But Ja, 1 = BB, _1+J 3 a1 by Lemma 4.2.
Therefore,
Blan a0 =kfay 1 +wfog -,
where w € J. But, t(8)w = 0, since there are no oriented cycles.
Therefore, a1 -+ j6 = ka1 . O

Definition 4.4. An algebra A with Jacobson radical J is called left
multiserial (m-multiserial) if, for each primitive idempotent e of A, the
left ideal Je is a sum of uniserial (m uniserial) A-modules.

By the work above, Conjecture 3.2 is true for all triangular algebras
with a presentation so that for each a € I';, Aa is uniserial. Every
left multiserial algebra is isomorphic to one with such a presentation
(see [11, Remark 2.3]).

5. THE CASE OF MONOMIAL ALGEBRAS

Throughout this section we assume that the algebra A is a triangu-
lar algebra. We will prove that the conjecture is true for monomial
algebras.

Theorem 5.1. Suppose A is a triangular monomial algebra and U is
a uniserial A-module with mast p. Then the following statements are
equivalent:

(1) The embedding JU — U is irreducible.
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(2) U is not simple and satisfies both (a) and (b) below:
(a) (i) For every B € B, Bogp—1-- a1 =0,
(ii) For every 0 € D, dagsy—1---oq = 0.
(b) For every 3’ € B’ such that 'p # 0 we have:
(i) For everyy € C, B'an_1---ayyy =0,
(ii) For every 6 € D, f'ap—y - - (50 = 0.

Proof. Note first that, since the algebra is monomial, the conditions
(2) are equivalent to the ones in Conjecture 3.2.

(1) = (2)(b))
Let p = ay_1---a; and U = Ae;/K. Suppose that there is 5/ € B’
such that 8'p # 0 and (o, 1---a;y # 0 for some v € C, where
r - i, with = ¢ {1,2,...,n}. By condition (2)(a), V, = {0}. Let

Al ol
G =P ap_1--ar, @@= Fop_ oy

Since A is a monomial algebra and ¢; # 0; By [12, Proposition 2.3],
0€V, fori=1and2. Let U, := ®,(0) = Aey/L and U, := ¢,,(0) =
Ae,/F, where e, = s(7y). Let

Uy uJU, U,

V Vi ,

where
H=Mn+L,q+LF)+ ML apy--ar+ Lion -y + F).

Once again, for v € V, eyjv = (ke; + L, L,z + F) + H, where z is a
linear combination of paths from s(y) to e;. However, such a path goes
through e; and so is a non-route on ¢, i.e., z € F. We have

JU v YU,

where ¢: JU - Vbyoy+K — (a1+L,as+L, F)+Hand¢: V — U
by (e1+ L,L,F)+ H — e; + K,(L,ay + L,F)+ H — 0+ K and
(L,L,e, + F) 4+ H — 0. Then, ¢ and 1 are well-defined and ¢ is
not split monomorphism. We will prove that i also is not a split
epimorphism, which contradicts the irreducibility of JU — U.

Claim : 1 is not a split epimorphism: Suppose there exists xy : U — V
with ¢y = id. We have x(e; + K) = (e + L, L, F) + H. But ¢; =
Ban_1---a; € K. Hence x(K) = x(q1 + K) = (¢ + L, L, F') + H is
zero in V. Then (¢1 + L, L,0) = k(1 + L,y + L,0) + 15 (a1 - - - aq +
Loy ayyyy + L, F), where k,l € R Therefore k = 1, k+1 =
0, [ = 0, which is a contradiction.

(1) = (2)(b)(id):
Suppose there is 3 € B’ such that 8'p # 0 and f'ay—;1 - - o560 # 0
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for some § € D. Let §: 1 — j. By (a)(ii), s(§) =i # 1. Let

/ /
G = Fan--an,qr = Fomy g0

and let U,, = Ae;/L; be the uniserial module corresponding to 0 € V,
for i =1,2. Let
Uy U JUg U Uy,
H‘ Y
where H = A(q1,¢1,0) + A0, oy - - - g, g - - - 00).

V=

Uq 1

a1

JUq Ugs

d

We have
JU v U,

where p: JU -V by a1+ K +— (o + Loy + L, F)+ H and ¢: V —
Uby (et+L,L,F)+ H +— e+ K,(Lyay + L,F) + H — K and
(L,L,e;4+F)+H — K. Again, ¢ and 1 are well-defined and 1o = id ;.
Claim: ¢ is not a split monomorphism:

Suppose there exists x: V — JU such that yp = id. Then, we have
a1+ K =xv(ag+K)=x(an+L,on+L,F)+ H=x((a1+ L, L, F)+
H)+x((L,a1+L,F)+H) =x((L,a1+ L, F)+ H). Also we know that
X((L,L,e; + F) = ka;_1 -+ -1 + K, where k € K. Then x((L, L, de; +
F)=kéa;—---a; + K =0, by (a)(ii), and

X(H)=x(L,op1---a1+L, 0y j6+F) = g - oo +K # K,

which is a contradiction.

Claim: ) is not a split epimorphism:

Suppose there x; : U — V with ¢¥x; = id. We have yi(e; + K) =
(1 + L,L,F)+ H. Hence x1(K) =x1(¢1 + K) = (g1 + L, L, F) + H.
Therefore (¢; + L, L, F) + H = H, and so

(@ +L, L, F) € Mqi+L,qu+L, F)+AB (L, 0y - ar+ Loy - a0+ F).

Then (n+L, L, F) = k(@1 +L, u+L, F)+H 5 (L, a1 - -y +L, ooy q -+ - 00+
F), with k,1 € R. Therefore k =1, k+1 =0, | =0, which is a contra-
diction.

O
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6. ALMOST SPLIT SEQUENCES WITH UNISERIAL END TERMS

In this section, we first show that if we have an arbitrary exact
sequence with uniserial end terms, then the middle term is either inde-
composable or a direct sum of two uniserials. Then we study a(U), the
number of indecomposable summands of the middle term of an almost
split sequence ending in U, where U is a uniserial A-module and give
a global upper bound for it in the case that A is a multiserial algebra.

Proposition 6.1. Let R be a left artinian ring and consider a short
exact sequence

0 U, -2, 0

i R-mod with uniserial modules U; and Uy. Then M 1is either inde-
composable or a direct sum of two uniserial modules.

Proof. We will again denote the Jacobson radical of R by J. Assume
we have a decomposition M = M;® M, with both M; and M5 non-zero.
Decompose f and g accordingly, i. e., write f = (g) and g = (g1, 92),
and let

~: R-mod — (R/J)-mod
be the functor R/J %) —. We then get the right exact sequence

f1
0, —25 01 @ 0, 22 0y, —— 0
where U; and U, are simple and M;, M, non-zero semisimple. Com-
paring the lengths of the involved modules, we see that both M; and
M, must be simple and f # 0. Without loss of generality, we may
assume f1(U;) = M;.

Pick uy € Uy \ JU;. Then fi(uy) € My \ JM; generates M;. Hence
f1 is surjective and M is uniserial. If fo(uy) = 0, then fo = 0 and gs is
injective, and consequently My is uniserial. If fo(u;) # 0, we can find
[ >0 with fo(uy) € J'My \ JFEM,. If I = 0, then fo(u;) generates Mo
and M, is therefore uniserial. We will assume [ > 0 from now on.
Claim 1: im(g;) C J'Us.

Let my € My; write my = afi(u;) = fi(auy) with @ € A. Then
gi(m1) = g(m1) = gfilaw) — gf(auw) = —gfalaw) C g(J'My) C
J'U,. Hence we have g (M;) C J'Us,.

Claim 2: g, is surjective and the map MQ/JZMQ — Ug/JlUg mnduced
by go s an isomorphism.

Let my € My \ JMs. Then uy := ga(mg) € Uy \ JUs (since go(ms) €
JU, would imply im(g) = im(g;) + im(g2) C J'Uy + JU, S U, a
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contradiction). Since us generates Us, go is surjective. Now let x €
My \ J'Msy and assume gy(z) € J'Us, say ga(z) = auy = go(amy) with
a € J'. Then x — amy € kern(gy) \ J'My C im(fy) \ J'My = (), again
a contradiction.

Claim 3: J'M, is uniserial.

By restricting our maps f and g, we obtain the following short exact
sequence:

0— U — M, & J'My —— J'Uy——0

and we see as above that J!M,/J 1M, is simple, hence J'M, is gen-
erated by fo(up) and fy : Uy — J' My is therefore surjective.

Claim 4: M, is uniserial.

We know that J*M,/J*+1 M, is simple or 0 for all k € N. O

In the sequel, A will be a finite-dimensional algebra over R.
The following proposition gives a general upper bound for the num-
ber a(U) for a uniserial module U:

Proposition 6.2. If U € A-mod is a non-projective uniserial module,
then

a(U) <length(soc DTrU) + 1.

Proof. Let 0 — DTrU — B — U — 0 be an almost split sequence.
Then 0 — soc DTrU — soc B — socU is left exact. Therefore,

a(U) < length(soc B)
< length(soc DTrU) + length(soc U)
= length(soc DTrU) + 1.

The following proposition gives more precise information.

Proposition 6.3. Let 0 — DTrU <, |lic; B 25U — 0 be an
almost split sequence where U is a uniserial module and the B; are
indecomposable.

(i) At most one of the induced maps g;: B; — U is a monomor-
phism.
(i) If B; 2> U is an epimorphism and soc B; is simple then
soc B; C f(soc DTrU).
(ii) Let I' ={i € I | g;: B; — U is an epimorphism} . Then |I'| <
length(soc DTrU).
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Proof. (i) Suppose ¢; and go are monomorphisms. Using Proposi-
tion 3.1 again, we have B; = JU and B; = JU. The induced irre-
ducible morphism B; LI By — U cannot be an epimorphism and there-
fore is a monomorphism and B; LI By, = JU, which is impossible.

(i) We have soc B; N kern(g;) # 0 since kern(g;) # 0 and soc B;
is essential in B;. But soc B; is simple, so soc B; C kern(g;). We

know that 0 — soc DTrU L ||;c; soc B; < socU is exact. Hence
soc B; C kern g = im f. Therefore, soc B; C f(soc DTrU).

(iii) We distinguish two cases:

Case 1: There is an ¢ such that g; is a monomorphism. Then

|I'l < a(U) -1 <length(soc DTrU)

by Proposition 6.2.
Case 2: For each i € I, the map g; is an epimorphism. We consider the

exact sequence 0 — soc DTrU <, ||;c; soc B; 2, socU and we use
(ii): if soc B; is simple for all 4, then f is an isomorphism and we get

|I'| = a(U) = length(soc |_| B;) = length(soc DTrU) .
el
If however at least one soc B; is not simple, then the same exact se-
quence gives

[I'l = a(U) < length(socl_l B;) — 1 <length(soc DTrU).
icl

O

Let e, f be primitive idempotents in A. For a non-zero element a €
fJe, the A-module Ae/Aa is indecomposable and non-projective. We
are interested in the case where this module is a uniserial module and
consider the almost split sequence ending in Ae/Aa.

Proposition 6.4. IfU = Ae/Aa is a uniserial module, then a(U) < 2.

Proof. Af -5 Ae — Ae/Aa — 0 (where .a denotes the right multipli-
cation by a) is exact and is the start of a minimal projective presen-
tation of Ae/Aa. From [2, Proposition V.6.1] we have that the middle
term B in the almost split sequence 6: 0 — DTrU — B — U — 0
has a decomposition B = B’ LI B” with B’ indecomposable and such
that if B” # 0, the induced morphism ¢”: B” — U is an irreducible
monomorphism. But, by Proposition 3.1, B” = JU is indecomposable
and therefore a(U) < 2. O
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Uniserial representations of left multiserial algebras are studied in
[11]. Here we find an upper bound for a(U) where U is a uniserial
module over a left m-multiserial algebra.

Theorem 6.5. Let U be a non-projective uniserial module over a left
m-multiserial algebra A with m > 2. Then a(U) < m.

Proof. By [11, Remark 2.3|, we can assume that A = &'/ such that
A« is uniserial for every arrow « in I';. Suppose p is a mast for U
and let ay be the first arrow of p. Let A = {Ayp |~y € T'1}. Any two
members of A are comparable; i.e., for 1,7, € I'y, either Ayip C Avyop
or Ayop C A~vp, since A« is uniserial. Hence there exists a greatest
element in A, say Avyp. Notice that Ayp can be zero. This happens
when Jp = 0.

Case 1: There is no arrow leaving e := s(p) except ay. Here Ae is
uniserial, we have U = Ae/Avyp and since U is not projective, vyp # 0.
Therefore a(U) < 2 < m by Proposition 6.4.

Case 2: There are arrows fi,...,0,041,...,0, leaving e except ay.
Assume (Bj,e) 0p (1 < j <) and é,e (I+1 < t < n) are non-
routes on p. Note that n < m, since A is m-multiserial. Let b; =
B; — Ziel(ﬂ%e) ki(8;,e)vi(Bj,e) and by = 6. If Ayp = 0, then U =
Ae/>" | Ab;. Otherwise U = Ae/(> "1, Ab; + Ayp). Let 0 — DTrU L,

| |;c; Bi 5 U — 0 be an almost split sequence. By Proposition 3.3,
all the induced irreducible maps ¢;: B; — U are epimorphisms. By
Proposition 6.3(iii), a(U) < lengthsoc DTrU. But by [2, Proposition
IV.1.11], we know that soc DTrU = P;/JP, where P, — Ae — U — 0
is a minimal projective presentation of U. Therefore a(U) < m. U

When A is left 1-multiserial, i.e., left serial, and U is uniserial then
the proof of Theorem 6.5 shows a(U) < 2.

Corollary 6.6. Suppose U is a non-projective uniserial module with
mast p over a left m-multiserial algebra A. Then

(1) If there is only one arrow leaving e = s(p), then a(U) < 2.
(ii) If m = 2 (for example, when A is a left biserial algebra), and
Jp =0, then a(U) = 1.

Proof. Part (i) follows from the proof of the above theorem. In part
(ii), let oy be the first arrow of p. Then, there is an arrow [ # a4
starting at e = s(p). Thus, either (3, e) 2 p or fe is a nonroute on p.
If (B,e) 0 p, then U = Ae/Ab, where b := 3 — Ziel(@e) ki(B,e)vi(B,e).
If 3 is a nonroute, then U = Ae/Ab, where b := [3. In both cases then,
a(U) =1 by [2, Proposition V.6.3], because the image of A f Y, Aeis
not in J?e, where f = ¢(3). O
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