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Abstract

We study the spectral classes of a finite, connected graph without
loops and with exactly one “essential” cycle. A spectral class consists
of all those orientations of the graph that don’t contain oriented cycles
and yield the same Coxeter polynomial. We show that, if the essential
cycle has m vertices, then there are exactly [m/2] distinct spectral
classes; the corresponding spectral radii are distinct in case the graph
is wild. Furthermore, we give an explicit combinatorial expression
for the entries of the powers of the Coxeter matrix of a finite quiver
without oriented cycles.

1 Introduction

We consider an undirected graph A and we will assume throughout that
A is connected and does not have any loops (multiple edges are allowed,
though). An essential cycle of A is a full subgraph C of A with vertex set
{x1,...,2,} where the z; are distinct and m > 3 such that there are edges
between x; and z;44 for 2 = 1,...,m — 1 and also between z,, and z;. The
graph A is called unicyclic in case it contains precisely one essential cycle.
We are mainly interested in the collections of those orientations of the finite
unicyclic graph A which yield the same Coxeter polynomial. These are called
the spectral classes of A. It is well known and easy to show that trees admit
only one spectral class; the unicyclic graphs considered here constitute the
first non-trivial case.

The coefficients of the characteristic polynomial of a matrix are related
to the traces of powers of that matrix. This fact induced us to search for
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an explicit formula for the entries of powers of Coxeter matrices of arbitrary
quivers without oriented cycles; the result is given in section 3.

We then reduce the study of unicyclic graphs to the case where A =C is
itself an essential cycle. This case can be handled combinatorially. Returning
to the general case, it turns out that a unicyclic graph whose essential cycle
contains m vertices has precisely [m/2] spectral classes; all of these have
distinct spectral radii provided A is wild. Here, we call a graph wild if it
is neither a Dynkin nor an Fuclidean diagram. The only non-wild unicyclic
graphs are the Euclidean diagrams A,,_;.

In order to be able to reduce to the essential cycle case, we need the
following statement, proved in section 4 using covering techniques: If A is
unicyclic and wild, and 7' is a proper (but not necessarily full) subgraph with-
out essential cycles, then for every cycle free orientation of A, the spectral
radius of A is strictly bigger than that of T'.

We should also mention that the coefficients of the Coxeter polynomial of
a quiver are closely related to the dimensions of the Hochschild cohomology
groups of the associated path algebra, see [Lu].

2 Notation and Preliminaries

2.1. We denote the set of vertices of the graph A by Ay and its edge set
by Ay. The adjacency matric Ax = (a;j) € Z20X20 of the graph A is the
symmetric matrix whose ¢7-th entry is the number of edges in A between the
vertices ¢ and j.

For each 1 € Ag, we define a reflection

o; R? — R%0
by setting
ejo; =€ +aje; fori# 37 and eo; = —e,.

Here {¢;},;ea, denotes the standard basis of R® (i. e. ¢;(i) = &;;). Observe
that if 2 and y are vertices not connected by a single edge, then 0,0, = 0,0,.

If < is a total order of Ag, and if we write Ag = {y1 < y2 < -+ <y, },
then we call

¢(A7<) = Oyt Oy,

the Cozeter matriz and its characteristic polynomial
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the Cozeter polynomial belonging to A and <. We associate to A and <
the following quiver (= oriented graph) (A, <): The set of vertices of (A, <)
is the set of vertices of A, and there are a;; arrows from ¢ to j if ¢ > j
and none otherwise. Note that (A, <), defined in this way, has no oriented
cycles, and, furthermore, every quiver without oriented cycles having A as its
underlying graph arises in this fashion from some ordering <. The Coxeter
matrix ¢(a,«) and hence also the Coxeter polynomial X(a <) depend only on
the quiver (A, <) and not on the specific choice of <. The spectral radius
of ¢(a,<y will be denoted by pa.<). Recall that pa <) = max{|\| | X €
C is an eigenvalue of ¢(a <)}

2.2. A vertex y € Ay is called a sink of (A, <) if there is no arrow in (A, <)
leaving y; similarly, y is called a source if there is no arrow entering y. We
say that (A, <) has sink-source orientation if every vertex is either a sink or
a source.

Now let y € Ag be a source of (A, <). We denote by r,(A, <) the quiver
which is obtained from (A, <) by reversing the orientation of all the arrows
containing y. In this way y becomes a sink for r,(A, <).

We say that r = ry,---r, is an admissible change of orientation of
(A, <) provided that y; is a source of (A,<), £ > 1, and y; is a source
of ry_, -1y (A, <) for e =2,..., 0

2.3. Let (A, <)°P be the quiver obtained from (A, <) by reversing the direc-
tion of all the arrows.

If A" is a subgraph of A (i. e. A’ is a graph having a subset of Ag as
vertex set and a subset of A; as edge set), then < induces a total order on
A}, again denoted by <. The subgraph A’ is said to be full if for any two
vertices in A’ the set of edges between them is the same in A’ as in A. We
say that A’ is a proper subgraph of A if it is a subgraph with A’ £ A.

2.4. The following is a collection of well known results. Let A be a finite
graph and < a total order of its vertices.

(i) f M = Maq € Z20X20 ig the matrix whose ij-th entry is equal to the
number of arrows from j to 7 in (A, <), we have Ay = M + MT and

bay=—(1—M")(I - M)

It follows that ¢a <jr = qb(_AlK) and also XA o) = &a,«)pr because of
G(a,<) = (I = M)dls cyor (I = M)~



(ii) [BGP]: Xa,«) = X,(a <) for every admissible change of orientation r of
(A, <).

(ii1) [R]: If @ € Ay, then there exists an admissible change of orientation r
of (A, <) such that x is the unique source of r(A, <).

(iv) Assume that A does not contain any essential cycles and let <’ be
another total order of Ay. Then there exists an admissible change of orien-
tation of (A, <), say r, such that the quivers r(A, <) and (A, <) are equal.
In particular, XA <) = X(a <.

(v) [Ca, PT1]: Let (A, <) be a quiver with n vertices, and assume that A
does not contain essential cycles or that < is a sink-source orientation. Then
the Coxeter polynomial of (A, <) and the characteristic polynomial of the
adjacency matrix of A are related by the following formula:

Xa)(t?) = t"det((t + 1711 — An).

(vi) [Bo]: Suppose there exist two full subgraphs A’ and A” of A such that
AJUAL = Ao, ALNAL = {2} and AU AT = Ay, Then

Xa(t) = Xar(t) Xam (o3 (1) + Xan @y () Xan(t) — (E + 1) Xan o) (1) Xam () (1)

where X is an abbreviation for X(r <) and all subgraphs inherit their orien-
tation from (A, <).

2.5. Let A be finite and let < be a total order of Ag. It is well known that
Ais a Dynkin or Euclidean diagram if and only if pa,<) = 1. We call both
A and (A, <) wild in all other cases. The following theorem describes this
situation.

Theorem. Let (A, <) be wild.

(i) [Ca,R]: pa<) is a simple root of Xa,«). Moreover, [A| < pa<) for
all eigenvalues A # p(a <) of ¢a ). In particular by (2.4.i), if © > 0 and
Xa, <)1) <0, then g < pa <)

(ii) [PT1]: Let A’ be a proper subgraph of A (not necessarily full or con-
nected) and assume that (A, <) has a sink-source orientation or A has no
essential cycle. Then par <) < p(a,<)- O

3 TIterated Coxeter Transformations

Let A be a finite graph and < a total order of Ay. We are going to describe
the entries of powers of the Coxeter matrix ¢ = ¢ «) in combinatorial terms.
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Definition. A sequence ¢ = (pe, Yo, Po—1, Vo1, ---» 1, Po) With £ > 0, oriented
paths po, ..., pe in (A, <) and arrows 71, ...,5¢ in (A, <) is called an (-twisted
path from start(po) to end(pe) if end(p;—1) = end(y;) and start(p;) = start(y;)
fore=1,..., 1.

The sequence ¢ is called (-endtwisted, if in addition 0 = length(p,) :=
#(arrows belonging to p¢) holds. If ¢ is as above, define

¢
length;(q) := length(p;_y) for i = 1,....,0 + 1 and |g| := { + > _ length(p;).
=0

The set of all (~twisted paths in (A, <) from ¢ to f is denoted by T*(e, f),
and the subset of all (~endtwisted paths from e to f is called E*(e, f).

3.1 Proposition. Let n be a natural number and e, f € Ag. Then
n e gl +n—{—1 lgl+n—1
(0")se = (1) Z( > ( n—1{ -2 n—{
q€F! (e, f) q€T (e, f)

Proof. If we set M = (#arrows from j to i); jea, and C = (I — M)~  then
¢ =M"C — C, and an easy induction shows

-1

" = (MTo-C)" znj i > (I-M")(Cm(T] MTC™))

=1 (n1 ..... nz) =1
£
=1
Now remember that C' counts oriented paths in (A, <) and, more generally,

(€4, = 5 (1ength]ipi Jlr k— 1)'

ppath frometof

Using the definition of T*"!(e, f), it follows

. length;( i—1
(Cng(H MTCni))f,e _ Z H ( eng ‘|’ n; )
=1 qeT - e f)z 1 —1

The result is now a consequence of the following identity, valid for all non
negative w,ry, ..., vy



u; >0 Wlth u:ZZ: g
=1
(Choose u elements with repetition from a disjoint union of ¢ sets, the i-th
of which having r; elements). O

4 Galois Coverings

4.1 Let A, A be (not necessarily finite) graphs and let < and < be total
orders of their respective vertex sets. Following [DS] and [G], we say that an
epimorphism of quivers 7 : (A, <) — (A, <) is a Galois covering defined by
the group G, if the following conditions are satisfied:

1) G < Aut((A, <)) is a group of quiver automorphisms which acts freely (i.
e. the identity is the unique element of (¢ which leaves a vertex or an arrow
of (A, <) fixed);

2) n7Y(rz) = Gz, for every vertex or arrow z of (A, <).

Example.
(-2,1) (-1,3) (-1,2) (-1,1) (0,3) (0,2) (0,1) (1,3)
[ [ [ [ [ [ [
[
(—2,4) (-1,4) (0,4)

.
° o/.\o

where 7 maps each vertex (j,x) to x and each arrow (j,z) — ({,y) to
x —> y. This is a Galois covering defined by the group G = {¢,, | n € Z} ~ Z
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where ¢, acts by ¢,(7,2) = (j +n,x).

4.2 Let 7 : (A, <) — (A, <) be a Galois covering defined by the group G
of a finite, connected quiver (A, <). Assume that A is connected and has no
essential cycles.

If (AW, <)jeN is a sequence of full finite subquivers of the (not necessarily

finite) quiver (A, <), we say that (AW, <); has limit (A, <) and write

(A, <) = lim (A, <)

j—oo

if for any arrow a in (A, <), there exists N € N such that o is an arrow in
(AW <) for all j > N.

In this situation, the limit
P(az) = lm paw

exists and does not depend on the choice of the sequence (AU), <). This
follows from the corresponding fact about characteristic polynomials of adja-
cency matrices ([PT2] Theorem 1.5) and the translation mechanism provided
by (2.4.v) together with (2.5.1).

Obviously, this definition does not conflict with the previously defined
P(a,z) In case A is itself finite. Furthermore, P(a,z) does not depend on the
orientation < since the same is true for the p(A() <) according to (2.4.iv).

4.3. Lemma. (i) Let 7: (A, <) — (A, <) be a Galois covering defined by
the group G of a finite, connected quiver (A, <).

i.1) If G is finite, then px 2y = p(a,<)-

1.2) If A is unicyclic and A is connected and has no essential cycles, then
P(AR) S P(AS): )

i.3) If A is unicyclic and A is connected and has no essential cycles, and
< is a sink-source orientation, then pa 2y = p(a <)-
(ii) Let (A, <) be a finite quiver whose underlying graph A is unicyclic.
Then there exists a Galois covering (A, <) — (A, <) defined by Z such

that A is an infinite connected graph without essential cycles. Moreover, A
depends only on A and not on the orientation < of Ag.

(iii) Let A be a unicyclic graph with essential cycle C such that |Col is
even. Then A admits a sink-source orientation <g. Moreover, whenever <
is another orientation of A, we have p(a ;) < p(a,<)-
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Proof. Part (i.1) is [PT3] Proposition 1.5. To prove (i.2), note that GG ~ Z
in this case, and [PT3] Proposition 1.6 applies. For the proof of (i.3): again,
we have G ~ Z and this is an amenable group, hence [PT2] Theorem 3.1
applies.

(ii): Let C = {ay1,...,x,} be the essential cycle of (A, <). We define a
Galois covering (A, <) of (A, <) as follows: Ay = W,z 80 X {{}, and the set
A1((y,0),(z,p)) of edges between the vertices (y, (), (z,p) is given by

) Aq(y, 2) if ¢ =pand {y,z} #{z1, 2}
Ai((y,0),(z,p) = Ar(am,21) ifp=C—1and {y,z} = {21, 2.}

1] otherwise

and < is the induced orientation of A. This yields a Galois covering defined
by Z similar to the one in example (4.1).

(iii): As in (ii), we can find a graph A and Galois coverings 7 : (A, <o) —
(A, <o) and 7' : (A, <) — (A, <) defined by Z. We pointed out already
that pa z,) = p(a,z) holds. Thus,

P(8.<0) (= P(B.0) T P(BR) (E)P(AK)

O

4.4 Proposition. Let (A’ <) be a proper (not necessarily full) subquiver
of a wild unicyclic quiver (A, <). Assume A’ has no essential cycle. Then

P(arn<) < P(A<)-

Proof. Let C be the essential cycle of A, with m = |Cy|. By (4.3.i.1), we
can assume without loss of generality that m is even. Thus, let (A, <y) be
a quiver of A with sink-source orientation. Let 7 : (A, <) — (A, <) and
mo 1 (A, <o) — (A, <o) be Galois coverings defined by Z and A connected
and without essential cycles, as in (4.3.iii). Then we get

PAL<) T PAL<) S P(A<) T PG = PAR) 4§3 P(A,<)-

(2.4) (2.5) (a.3)" & <) (i3



5 The Spectral Classes of Unicyclic Graphs

In this section, A will be a finite, unicyclic graph with essential cycle C. We
assume throughout that C has m vertices xy, ..., z,, and that there are edges
between x; and x;41 for : = 1,...,m — 1 and also between z,, and z;.

5.1 If < is a total order of Ay, we set
a = aa,<) = #{(u,v) e{(z,zip1) |1 <i<m—1}U{(zpm,21)} ‘ u>v
bi=baqi= #{(wv) € {(wiripn) [1<i <m—1}U{(m,20)} | v>u

and define

j
j

Y

V(a<) i= |a—bl.

Since (A, <) has no oriented cycles, both a(a «) and b <) are positive; fur-
thermore, v(a <) does not depend on the numbering of the vertices of C. All
three numbers depend only on the quiver (A, <) and not on the particular
total order chosen. Loosely speaking, ba <) counts the number of multiar-
rows in C pointing in clockwise direction, and a(a <) counts the others. If A
is equal to the Euclidean diagram A, and a := UA, 1<) b= b(A
we have

777,—17<)7
Xa,_olt)=(0"— (" —1).

5.2. The following theorem is the main result of the paper. The proof will
follow in section (5.5).

Theorem. Let A be a unicyclic graph whose essential cycle C has m vertices.
(1) There exist integer polynomials f,g € Z[t] (depending only on A), such
that for every total order < on Ag:

X<y = f+9Xc <)

Moreover, f and ¢ are products of Coxeter polynomials of certain full sub-
graphs of A having no essential cycles.

(ii) The number of different spectral classes of A is equal to [%] (=biggest
integer less than or equal to 7% ).

(iii) Let <; and <3 be two total orders of Ag. The following statements are
equivalent:

(a) X(A,<1) = X(A,<2)



(b) va<i) = v(acy)
(c) there exists an admissible change of orientation r of (A, <;) such that

T(A, <1) = (A, <2) or T(A, <1) = (A, <2)0p‘

Moreover, if A is wild, we have

PA<) < P(A) S V(A<) <U(AKs):

Part (ii) of this theorem was proved by Coleman in [C] in case A =C is
itself an essential cycle.

5.3. Lemma: (i) a(a «<)jr = m — a(a <) and therefore v(a <) = v(a <jor-

(ii) Let (A, <;) and (A, <3) be quivers of A. We have va,«;) = v(a,<)
if and only if there exists an admissible change of orientation r of (A, <y)
such that r(A, <1) = (A, <y) or 1A, <1) = (A, <2)°P. In this case, we have
Yoy = X<

Proof. (i) is clear.

(ii) “<=” By (i) and induction, it is enough to take r = r,, where € Aq
is a source of (A, <y), and show that Vr(A<y) = V(A<y- This is clear if
x & Cy because the edges in C are not affected by the application of r. If, on
the other hand, = is a vertex of C, then the orientation of those edges of C
that contain x will change, but the numbers a(a «,), b(a <,) and hence v(a <)
remain the same.

“=" In the first case, we consider the situation when a(a <) = a(a <,)-
Pick x € Cy arbitrary. We can find admissible changes of orientation s,
of (A, <) and (A, <2) so that « is the unique source of both s(A, <;) and
t(A, <3), and therefore of C, according to (2.4.iii). We have aya <,) = ty(a <)
and it is then clear that s(A,<;) and t(A, <z) must be the same quivers,
which provides us with an admissible change of orientation r of (A, <;) such

that T(A, <1) = (A, <2).

In the case aa«<,) = ba,<,) = @(a,<,)or, using the same arguments,
we can exhibit an admissible change of orientation r of (A, <;) such that
T(A, <1) = (A, <2)0p‘ O

5.4 Proposition. For i = 1,...,[%], let (C, <;) be the orientation of C with
unique source r; and ae <,y = 1. We write a;; := a,,,; for the number of
edges between the vertices x; and x; and set d := aigas3 ... d(m_1)m@m1. Set
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X == X,<;)- Then

and, in particular, the &; are pairwise distinct for 1 <7 < [%].

Proof: Write M; := Ma ;). We then have
Xy(t) = det(t(I — M;) + I — M},

since det(/ — M;) = 1. Observe that (¢(/ — M;)+ [ — MZ»T) =t+1ifu=wv,
and —[t(#arrows(v — u)) + (Farrows(u — v))] if u # v.

Then, by the Leibniz formula for the determinant, it follows

uy

Xi(t) = ( > sgn(o)(t + 1)m‘2€°tz"af<o>j<o> ---af(c)],(c))
o€Sm\{(

1,2,...m),(m,m—1,..,1)} v to o
(o)

Jo,’) is a minimal expression of o as a prod-

() 0y (i)

where o = (1}, ;
uct of transpositions and 5, denotes the group of permutations of the set
{1,...,m}. O

5.5. Proof of Theorem (5.2): (i) Since A is a unicyclic graph, it has the
following shape:

T

T

where all T; are trees and ; € Co N (T})o, ¢ = 1,..., . Then the result follows
by induction on ¢ and (2.4.vi), taking into account that the Coxeter polyno-
mial of a graph without essential cycles does not depend on its orientation.
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(ii) follows from (iii), below.

(iii) The equivalence of (b) and (¢) was proved in Lemma (5.3.ii), while
(c)=(a) follows from (2.4). To see (a)=(b), assume v(a «<,) # V(a,<,)- Us-
ing (2.4.iii), we find admissible changes of orientation r and s so that both
r(C,<1) and s(C, <3) have unique source xg. Because of v, <) # vs(c,<2)
Proposition (5.4) together with (i) shows that XA <) # X(a <,)-

Now assume A is wild, and v(a <;) < v(a,<,). Without loss of generality,
we can assume that aa «,) < ba <) Since va <) < v(a,«,), there exist
numbers a, 3 > 0 such that aa <) = aa,<,) + @, ba,<,) = a(a,<,) + 3, thus
ba,<,) = (a,<,) T a+ 3. Write p := p(a <,). We then get

Xe<n)(p) = Xiccnlp) = dlphas 4 phasn — priasa) — phia<a))
= —dp"e=(p” = 1)(p" =1) <0

since p > 1 (2.5). Note that g(p) > 0, where ¢ is the polynomial from (i);
this follows from (4.4) and (2.5.i). We get:

Xa,<)(P) = Xa<)(p) — Xa<))(p) = 9(p)(Xic,<o)(p) — Xe<iy(p)) <O

which, by (2.5.i), implies p < p(a <,)- 0
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