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ABSTRACT

Two Aspects of Finite-Dimensional Algebras:
Uniserial Modules and Coxeter Polynomials

by
Axel Boldt

In this dissertation, we define “triangles of uniserials” and locate them in
the Auslander-Reiten quivers of finite-dimensional triangular algebras. Irredu-
cible morphisms between uniserial modules over hereditary algebras are also
classified, as well as those uniserial modules having uniserial Auslander-Reiten
translate. It is shown that, over a wild hereditary algebra, almost all uniserial
modules are regular and quasi-simple.

Moreover, we give a reduction principle for calculating Coxeter polynomials
and use it to determine the spectral classes of unicyclic graphs. Combining
this principle with covering techniques, we show that, if the cycle of a unicyclic
graph consists of m points, then the graph has [m/2] spectral classes and, in
case the graph is wild, the spectral radii of these classes are distinct.
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Introduction

This dissertation contains the study of two aspects of the representation theory
of finite-dimensional algebras: Uniserial modules over triangular and heredit-
ary algebras and the patterns in which they arise as vertices of the Auslander-
Reiten quiver in part 1, and the Coxeter polynomials of hereditary algebras
and, in particular, algebras based on unicyclic quivers in part 2.

By A we will denote a finite-dimensional associative algebra over a field
K, by J its Jacobson radical, and the modules we consider will be finitely
generated left A-modules.

In the first part, we focus on uniserial modules, i. e. those non-zero mod-
ules that admit precisely one composition series. These are (arguably) the
simplest indecomposables, and this makes it interesting to understand their
role within the category A-mod of finitely generated left A-modules. One ma-
jor tool used to study this latter category is its Auslander-Reiten quiver, the
directed graph having as vertices the isomorphism classes of indecomposable
modules and as arrows the irreducible maps between them; a homomorphism
f+ M — N between indecomposable modules M and N is called irreducible
if the only possible factorizations f = gh are trivial, i. e. either h is a split
monomorphism or ¢ is a split epimorphism. These irreducible maps are im-
portant because, in many situations, they constitute the basic building blocks
for arbitrary homomorphisms.

Another motivation for studying irreducible homomorphisms lies in their
tight connection to Auslander-Reiten sequences. A non-split short exact se-
quence

0— Moy 2o N ——0

with indecomposable end terms M and N is called an Auslander-Reiten se-

quence if every homomorphism h : L — N that is not a split epimorphism

can be lifted over ¢g. It turns out that, up to isomorphism, there is always

precisely one Auslander-Reiten sequence ending in a non-projective indecom-

posable module N. Its initial term is called the Auslander-Reiten translate of
3



4 INTRODUCTION

N and denoted by 7N = M. The situation is symmetric in that all indecom-
posable non-injective modules arise uniquely in the form 7N. Because 7 can be
computed rather easily, this provides a method for constructing new indecom-
posable modules from known ones. The connection with irreducible maps is
as follows: if the middle term X is decomposed into a direct sum of indecom-
posables, then the corresponding components of f represent all the irreducible
maps starting in M and the components of g represent all the irreducible maps
ending in V.

In Chapter 1, we focus on split basic triangular algebras. These are the
homomorphic images of finite-dimensional path algebras KT, where I' is a fi-
nite quiver without oriented cycles (see e. g. [17, sec. 2.1] for the definitions,
but note that, in contrast to the convention adopted there, we compose paths
like maps: if p is a path from = to y and ¢ is a path from y to z, then we
denote the composite path from x to z by ¢gp). Our primary goal is to under-
stand irreducible maps f : Uy — U, between uniserial modules Uy, U;. The
following basic fact can easily be proved for arbitrary algebras: namely, the
only irreducible maps between uniserial modules are certain radical embed-
dings JU — U and socle factor projections U — U/ soc U; since these are
clearly dual to each other, our question therefore becomes: For which uniserial
modules U over a triangular algebra A is the radical embedding JU — U irre-
ducible? We provide a sufficient as well as a necessary combinatorial condition
in terms of quivers and relations for this phenomenon. The two conditions are
separated by a rather slim margin; but an elimination of this gap has unfor-
tunately not yet been accomplished. However, the existing results suffice to
completely characterize the irreducible maps between uniserials over heredit-
ary algebras, and to locate and identify certain interesting patterns of uniserials
in the Auslander-Reiten quiver of general triangular algebras. We call these
“triangles of uniserials”.

A triangle of uniserials is defined to be a full subquiver of the Auslander-
Reiten quiver of the following shape:

S\

Jn— llffl/r 1,2

VAVAN
NN

Up----Ua Uini-—-Uin



INTRODUCTION 5

where n € N and the U;; are pairwise non-isomorphic uniserial left A-modules
with
length(U;;) =1 for all 7 and j.

The notation U - — -V indicates that 7V = U. It turns out that these tri-

angles occur quite frequently. For example if A, is the linearly oriented graph
An,

® ® P .7

then all irreducible K A,-modules are uniserial, and the full Auslander-Reiten
quiver of KA, is a triangle of uniserials. So, whenever a triangle of uniseri-
als occurs in the Auslander-Reiten quiver of A, one can interpret this as oc-
currence of a subcategory T equivalent to a category of the form KA,-mod
inside A-mod; in particular, each such subcategory T has Auslander-Reiten
sequences.

The main theorem of Chapter 1 completely characterizes those uniserial
modules over triangular algebras that appear as the upper tips of maximal
triangles of uniserials. The proof relies on the information about irreducible
maps between uniserial modules that was obtained earlier.

In Chapter 2, then, we specialize to the hereditary case, i. e., we study mod-
ules over finite-dimensional path algebras KT'. In fact, it was the hereditary
case that provided the original motivation for the work on triangular algebras
in the first place. As we already mentioned earlier, in this situation it is pos-
sible to characterize the irreducible maps between uniserial modules completely.
Moreover, the resulting description of triangles is much more transparent than
in the triangular case. In particular, we manage to give a description of the tips
of triangles that does not involve any combinatorics but is completely module-
theoretic. As a consequence, virtually all irreducible maps between uniserials
(more precisely: all but the radical embeddings of projectives and the socle
factor projections of injectives) are embeddable in triangles of uniserials. This
means that, except for the projectives and the injectives, the uniserial modules
appear in the Auslander-Reiten quiver either isolated or in triangles. Com-
bined with the standard information about the structure of Auslander-Reiten
quivers of hereditary algebras, this yields still stronger insight about the pos-
sible location of uniserial modules inside that quiver: we show that, in the
wild case, almost all uniserial modules are regular and quasi-simple. An in-
decomposable module X is called regular if its connected component in the
Auslander-Reiten quiver does not contain any projective or injective modules;
it is called quasi-simple if there does not exist any injective irreducible map
ending in X.
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One of the reasons for this clean picture lies in the fact that the hereditary
situation allows for an easy description of the uniserials: Modules over the al-
gebra KT are simply K-linear representations of the quiver I'; i. e. assignments
of finite-dimensional K-vectorspaces to the vertices and K-linear maps to the
arrows of I'. As a consequence, one obtains all uniserial modules by choosing
a path in I' (sometimes called a “mast” in this situation), by assigning the
vectorspace K to every vertex on the mast and 0 to all others, and by substi-
tuting the identity map for each of the arrows on the mast. Using this explicit
description, we classify (in terms of their masts) those uniserials modules U
over K'T' which have uniserial Auslander-Reiten translate 7U; in the positive
case, this uniserial module 7U is pinned down in terms of its representation.

In general, if we have a short exact sequence

0 U X V 0

with uniserial end terms U and V, then the middle term X is either indecom-
posable or a direct sum of two uniserials. Combining the information about
irreducible maps and Auslander-Reiten translates, one can easily describe those
Auslander-Reiten sequences over hereditary algebras which are made up from
four uniserial modules. Another application is as follows: it happens compar-
atively often that every uniserial U has the property that either the sequence
U for ¢ > 0 consists only of uniserials and ends eventually in a projective
module, or the sequence 77U/ for ¢ > 0 consists only of uniserials and ends in
an injective module. In other words, all uniserials are connected to projectives
or injectives via a chain of 7-translations that only involve uniserials. We clas-
sify those hereditary algebras of finite representation type for this is always
true.

In the second part, we examine the Coxeter polynomial of a hereditary
algebra A = KT'. The Cozeter polynomial is the characteristic polynomial of
the Coxeter transformation, which in turn is the unique endomorphism ¢ of
the Grothendieck group Ko(A) satisfying

O[P;] = —[I;] for all vertices i of T'.
Here, [X] denotes the image of the module X € A-mod in Ko(A) (which

can be identified with the dimension vector of the associated representation of
[') and P; resp. I; are the indecomposable projective resp. injective modules
corresponding to the vertex ¢.

The significance of the Coxeter transformation stems from the fact that
it describes the Auslander-Reiten translation on the level of the Grothendieck

group:
O[X] = [rX] for every non-projective indecomposable X.
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The Coxeter polynomial — especially its zero set — thus encodes important
information about the asymptotic growth behavior of the Auslander-Reiten
translation. But it also contains homological information: its coefficients are
closely related to the dimensions of the Hochschild cohomology groups of A,
see [16].

The coefficients of the characteristic polynomial of a matrix, in general, can
easily be calculated from the traces of powers of that matrix [13, p.87]. This
induced us to search for an explicit formula for the entries of powers of the
Coxeter matrix in terms of the combinatorics of the quiver I'. The result can
be found in Chapter 4.

In addition, we present a reduction formula that significantly simplifies
the calculation of Coxeter polynomials in concrete situations: in the situation
where the quiver I' is the union of two subquivers I'y and I'; that have precisely
one vertex in common, we can express the Coxeter polynomial of I' in terms
of the Coxeter polynomials of these smaller quivers. This trick quite naturally
leads to explicit formulas for the Coxeter polynomials of certain classes of
quivers; these were already given in [4], but we include them here in order to
illustrate the method. In fact, we were able to prove a more general version of
this reduction principle which even allows for the presence of certain types of
relations on the quiver I'. This work has been published in [5].

In the sequel, we approach the following problem: given an undirected
graph A, how many orientations of A yield different Coxeter polynomials? In
this context, the collection of all the orientations that result in the same Coxeter
polynomial is called a spectral class of A. 1t is well known that trees have only
a single spectral class. We solve the first non-trivial case: namely, we deal with
those graphs A which contain exactly one cycle; these graphs we call unicyclic.

The statement of the main theorem is as follows: If the cycle of a unicyclic
graph A consists of m points, then A has [m/2] spectral classes. Moreover, if
the graph A is wild (which, in this situation, means that it does not only consist
of a cycle by itself), then the different spectral classes have different spectral
radii (defined as the spectral radii of the corresponding Coxeter polynomials).
We completely describe the spectral classes and order them according to their
spectral radii. The proof of this theorem uses the reduction formula established
earlier as well as covering techniques.

This last part of the thesis, addressing spectral classes of unicyclic graphs,
is the result of joint work with Martha Takane, see [6].
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CHAPTER 1

Uniserial Modules over Triangular Algebras

1.1. Introduction and General Results

In this chapter, we will study uniserial modules over triangular algebras,
with emphasis on the irreducible maps between them and “triangles of uniseri-
als” (certain full translation subquivers of the Auslander-Reiten quiver iso-
morphic to the Auslander-Reiten quivers of linearly oriented graphs A,, ).

Section 2 first gives a necessary combinatorial condition for the radical
embedding of a uniserial module over a triangular algebra to be irreducible,
followed by a sufficient condition. Unfortunately, a complete combinatorial
characterization of this phenomenon has not yet been accomplished; however,
the present results suffice to completely understand triangles of uniserials. The
theorems concerning triangles are presented in Section 3. In addition, Section 3
gives an example of a phenomenon that cannot appear in the hereditary case:
“incomplete triangles”. These examples can easily be constructed by means
of the results of Section 2.

In the beginning of this introductory section, we will present some rather
elementary general results about uniserial modules and then set up the notation
to be used in the analysis of the triangular case. We will also emphasize the
differences between the general triangular and the hereditary theories.

DEFINITION 1.1.1. Let R be a ring. A non-zero R-module U is called uni-
serial if the lattice of its submodules forms a chain, i. e. if every two submodules
of U are comparable.

Obviously, all subfactors of a uniserial module are again uniserial.

In the sequel, we will exclusively deal with uniserial left modules U of finite
length. The lattice of proper non-zero submodules of U is then a finite chain
with maximal element rad U and minimal element soc U. If, moreover, the ring
R is left artinian with Jacobson radical J, then the submodules of U are given

by JIU,1=0,...,length(U).

REMARK. Let R be left artinian with Jacobson radical J and let X €
R-mod. If X/JX issimple, then every € X \ JX generates X.

11



12 CHAPTER 1. UNISERIAL MODULES OVER TRIANGULAR ALGEBRAS

PrOOF. We have X = Rz 4+ JX by hypothesis. Since JX is small in X,
we obtain X = Rx. U

PROPOSITION 1.1.2. Let R be a left artinian ring and consider a short
exacl sequence

0 U~ v, 0

in R-mod with uniserial modules Uy and Uy. Then M is either indecomposable
or a direct sum of two uniserial modules.

PrROOF. We will again denote the Jacobson radical of R by J. Assume
we have a decomposition M = M; & M; with both M; and M; non-zero.

Decompose f and ¢ accordingly, i. e., write f = ( ;) and g = (¢1,92), and let
“: R-mod — (R/J)-mod

be the functor R/J @ —. We then get the right exact sequence
R

;;) - — (g1.92) -

(jl EMl@Mz >U2*>0

where U; and U, are simple and M;, M, non-zero semisimple. Comparing the
lengths of the involved modules, we see that both M; and M, must be simple
and f # 0. Without loss of generahty, we may assume fi(U;) = M.

Pick wy € Uy \ JU;. Then fi(u1) € My \ JM; generates M;. Hence f; is
surjective and M; is uniserial. If fo(uq) = 0, then fo = 0 and ¢ is injective,
and consequently M, is uniserial. If fy(uy) # 0, we can find [ > 0 with
fa(ur) € J' M\ JFEM,. Tf 1 = 0, then fy(uy) generates My and M is therefore
uniserial. We will assume [ > 0 from now on.

Claim 1: im(g;) C J'U.

Let my € My; write my = afi(u1) = fi(ouy) with a € A. Then ¢(my) =
g(m1) = gfilaur) — gf(auy) = —gfa(auy) C g(J'My) C J'U,. Hence we have
91(M1) C JZUQ.

Claim 2: g, is surjective and the map My/J'My — Uy /J'Us induced by g
is an isomorphism.

Let mqy € M3\ JM;. Then uy := gg(mg) € Uy \ JU; (since gz(ms2) € JU; would
imply im(g) = im(g1) + im(gy) C J'U, + JUs & C Us, a contradiction). Since uy
generates Uy, g, is surjective. Now let x € MQ\J M, and assume go(2) € JIU,,
say g2(x) = auy = gz(ozmz) with a € J'. Then x — amy € kern(gy) \ J'M, C
im(fy) \ J'M,; = @, again a contradiction.

Claim 3: J'M; is uniserial.
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By restricting our maps f and g, we obtain the following short exact sequence:

OHUI*)Ml@JIMQ JIUQ 0

and we see as above that J'M,/J* M, is simple, hence J' M, is generated by
fa(ur) and fo : Uy — J'Mj is therefore surjective.

Claim 4: M, is uniserial.

We know that J*M,/J* M, is simple or 0 for all & € N. O

PropPOSITION 1.1.3. Let R be a left artinian ring with Jacobson radical J.
If Uy, Uy € R-mod are uniserial and f : Uy — Us is an irreducible R-linear
map, then either
(1) there exists an isomorphism ¢ : JUy — Uy so that f¢ is the natural
radical embedding JUy; — Us, or
(2) there exists an isomorphism 1 : Uy — Uy [ soc Uy so that i f is the natural
socle factor projection Uy — Uy [ soc Uy .

PrROOF. We only consider the case where f is injective; the case of a
surjection is analogous. We know that im(f) is a proper submodule of U,
hence im(f) = J'Uy with [ > 1 and U; ~ J'U, via f. However, if [ > 1,
then J!U; — J='U, — U, would clearly be a non-trivial factorization of
JIUy; — Uy and would yield such a factorization of f, which is impossible. [

We will now leave the general situation and concentrate on the case of a
triangular algebra. Let K be a field and let A = KT'/I be a finite dimensional,
triangular K-algebra (i. e. I is a finite quiver without oriented cycles and [ is
an admissible ideal of relations in the path algebra KT'). The Jacobson radical
of A will be denoted by J.

We will write AT for the set of arrows of I' and VI' for the set of ver-
tices of I'. Arrows in I' will be identified with their images in A; moreover,
we will write e, for the primitive idempotent in A corresponding to the ver-
tex © € VI. The starting vertex of an arrow a € AI' will be denoted by
s(a) and its terminal vertex by t(«). The same notation will be used for
starting and terminating vertices of paths. We will furthermore identify left
A-modules with the corresponding representations of I'. Note however that
not all representations of I' arise in this fashion, due to the relations in I.
Whenever V' = ((Vi)zevr, (ga)aear) is a representation of I' and p € e, KTe,
with 2,y € VI, we will write g, for the induced linear map V,, — V;,.. Finally,
K-linear maps having domain K will be identified with their values at 1.

A major tool for the combinatorial treatment of uniserials is given in the
following definition:
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DEFINITION 1.1.4. A path p in I' is called a mast of the uniserial module
U € A-mod if length(p) = length(U) — 1 and pU # 0.

REMARK. Every uniserial /' € A- mod has a mast.

PROOF. If n := length(U), then 0 # soc U = J*~'U and J"~! is generated
by the images of the paths of length n — 1. O

To prepare for our analysis in the following sections, we fix a finitely gen-
erated uniserial left A-module U with mast

Ap—1

p=1-252 2 ... 5y,

On several occasions, we will refer to certain subpaths «; - - - «; of p; whenever
1 < j, this expression will simply stand for 1. We now name all the arrows in
I' that touch p, classifying them according to the type of contact with p.

B :={B €Al'|s
C ={y €Al'|s
C"={y €Al [t
D ={5 € Al [{s(8).t(8)} C{l,... ,n} and § & {on, ... an_1}}.

v) €{1,...,n} and t(v) € {2,...,n}},

For an illustration of these definitions with an example, consider the fol-
lowing quiver ', together with the path p = asazay:

61

TRON

8

(V]
/\ S
(V]

Q

w

_=
=
[SES
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We then have
B ={p},
B ={B, 5},

¢ ={v}
¢ ={y}
D — {51,52}.

Observe that, in general, our uniserial module U/’ may be identified with a

representation U = ((U,), (fa)) of I', where
0. — {K, ifze{l,... nk

0, else

and

Jo, =1d for every i € {1,... ,n—1}.

The module U is then completely determined by the choice of the mast p and
the scalars f5(1) for 6 € D, different sets of scalars corresponding to non-
isomorphic modules.

Unlike the hereditary case, not every path is a mast, however, and not
every set of scalars appears in this fashion, since the relations in [ impose
restrictions. For instance if, in the example above, the relations

8201 + azagay + azdy = 0 = €8 — Bhazay,

are imposed, then the path ¢/ is not the mast of any uniserial module. Moreover,
it is easy to see that the allowable sets of scalars (once a mast is fixed) are the
points of a certain affine variety over K'; in our example, the variety for the
mast p = azazay is {(z,y) € K* | zy+ 1+ y = 0}.

1.2. Irreducible Radical Embeddings of Uniserials

We know from 1.1.3 that, in order to understand irreducible maps between
uniserial modules, it is sufficient to study radical embeddings (and their duals,
socle factor projections). The following conjecture covers this situation; we
manage to prove “(2) = (1)” and “(1) = (2)(a)” in the sequel. These two
implications, together with their duals, will suffice to completely characterize
triangles of uniserials in the next section.

CONJECTURE 1.2.1. The following statements are equivalent:
(1) The embedding JU — U is irreducible.
(2) U is not simple and satisfies both (a) and (b) below:

(a) For every B € B,

Bagg)—1- -1 € Jp,
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and for every 6 € D,
5ozs(5)_1 - € I(Ozt((g)_l cee Q.
(b) There exists a subset R C J such that {rp+ J*p | r € R} forms a

K -basis for Jp/J*p and (i) and (ii) both hold:
(1) For every v € C there exists w € pJ such that, for every r € R,

FOn_1 gy = TW.
(12) For every 6 € D and every r € R,
T (50 € Krag_y - ags).

PRrROOF OF “(2) = (1)”. Let V = ((V4), (9a)) € A- mod and suppose there

exist A-linear maps
gu 0y

such that U® is equal to the embedding JU — U.
Observe that we can assume without loss of generality that the elements of
the set R arising from condition (2) are normed in the following fashion: r =
eu(ryTen for certain vertices u(r) € VI'. We can thus denote by g, the K-linear
map V,, — V,() induced by left multiplication with r.

Note furthermore that we can strengthen the conditions on § € D in the
following manner:

dagsy—1 - a1 = fs(1)ays o1 o
and for every r € R

rap_y -0y = fs(1)ram_y - oy
The first equation is clear, and the second one follows then from
rQp_y - ()0 0s(sy—1 -y = fs(L)rap_y - ay
since rp # 0 for r € R.
Case 1: There exists v € Vi with Uy(v) =1 and (¢-ga,_, -~ gay )(v) = 0 for
all r € R.

Our goal is to construct a section x for W in this case. First observe that
(9p/Gan_y " Gay)(v) = 0 for all " € B" as well, because Jpv C 3. Krpv +
J*pv = J*pv implies Jpv = 0.
Define x = (xz) : U — V by

Xi(1) = (gai_ oy )(v)  forie{l,...;n} and
Xz =0 for v ¢ {1,... ,n}.
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Once we have checked that y € Homy (U, V), the equality Wiy (1) = 1 will
clearly imply Wy = id, completing the treatment of the first case.

So let us check that y is A-linear. That g.,x; = Xi+1 = Xit1fa, for ¢ €
{1,...,n — 1} is clear; moreover, we compute

9sXs(5)(1) = (95Gasy_, =" Gon ) (V)
= J5(1)(Gaygs)-y G ) (V)
= Xe(5)f5(1).
Now let 8 € B U B'. Then (Bagg—1---a1)(v) € Jpv = 0, and again

95Xs(p) = U= Xu(p)f-
Case 2: For every v € Vi with U (v) = 1, there exists r € R with

(gr’gan_l e 'goq)(v) # 0.

In this case, we will construct a retraction y for ®. First we note that there
exist linear maps w, : V,(-j) — K for r € R such that

U = Z WrGrGan_y """ Yoy -
reR

Define x = (xz) : V — JU by

Xi =V =3 cRWr G Gon_ s as fore € {l,...,n} and
Xz =0 for x & {1,... ,n}.
Again we need to check that y is A-linear. For that purpose, we compute
X1 = 07
Jaxi = Vit1ga, — (Z wr’gr’gan_lmaiﬂ)gai
réeR
= Xi+19q;

forvee{l,... ,n—1}, and

f5Xs(5) = q}t(5)95 - f5(1) Z wrgrgozn_ynozs((;)

réeR
- q}t(5)95 - Z wrgrgozn_ynozt((;)g(g
réeR

= Xt(8)9s
for 6 € D. In addition, we obtain 19 = 0 = fuxgy for o € ¢ If
~ € (), then we can clearly assume that the corresponding element w € pJ
from condition (2)(b)(i) has the form w = pw’ with w' € e;Jey), and it
follows

hengy = Jy¥s(y) — Z WrlrGan_y a9y
reR
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=0- Z WrGapg g-agy) G’
reR

— _\Illgw’
= _fw’q}s(w)
=0= was(w)-

Hence y belongs indeed to Homa(V, JU). That x® = id y is a consequence of
the following computation:

qu)z(l) = q’zq)z(l) - Z Wrgrgan_1~~~a2q)2(1)
rcR

=1- Z qu)u(r)frfozn_lmog(l)
reR
=1.

Thus ® is a split monomorphism in the second case, which shows that the
inclusion JU — U cannot be factored nontrivially. O

PROOF OF “(1) = (2)(a)”. Define a relation < on VI by setting
x < y :<=> there exists a non-trivial directed path from x to y in I’

This is in fact a partial order since I' does not contain oriented cycles.
Now assume that the embedding JU — U is irreducible and let z¢ € VI so
that

Bawgy-1--- o1 € Jp forall B € B with t(3) < zq
and
Sou(s)—1 -1 € Kaysy—1---ay for all § € D with t(8) < wo.
We will show that then also
Basgy-1--- o1 € Jp forall B € B with t(3) = zq
and

dagsy—1 - a1 € Koygy—y---ay for all § € D with t(d) = o,
which will prove our claim.
Case 1: 29 ¢ {1,... ,n}.
Set B := {0 € B | t(8) = xo}. If, contrary to our claim, there exists 5 € B
with 5%(@)-1 -+~ay & Jp, then we can find a K-linear map ¢ : e, Ae; — K
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with Jp C kern(¢) and qb([;ozs(é)_l -+~ aq) # 0. This will allow us to define the
following representation V' = ((V;), (ga)) of I':

K, if € {1,n,20};
Vi={KoK, ifee{2. . . .n—1}
0, else
S if s(e) =1 and t(a) = n;
(f(i)’ if s(e) =1 and t(a) €{2,...,n — 1};
fa @ fas if {s(a),t(a)} C{2,...,n—1};
9o = (far fa), if s(er) € {2,...,n— 1} and t(«) = n;
(), if o € B and s(a) = 1;
(0, p(aag(ay—1 - a1)), ifac€ B and s(a) > 1;
0, else.

We will see that V' does indeed define a left A-module and that the embedding
JU — U can be non-trivially factored through V. This violates condition (1).

First of all, we check that V' satisfies the relations in [: let x,y € VI' and
p=2,cq Mqeq € exley be a relation with y, € K and a set @) of paths having
lengths > 2, starting in y, and terminating in «. Obviously, g, = 0 if y &
{1,....n—=1}ora g {l,....n,ao}. fye{l,... ,n—1}and z € {1,... ,n},
then f, = 0, and since g, is one of f,, (;L), fu® fu,or (fu, fu), we have g, =0
as well.

Now assume @ = xg and y € {2,...,n — 1}. Since fz = 0 for all § € B,
we have g,(1,0) = 0 for all ¢ € @ and hence ¢,(1,0) = 0. On the other hand,
if Q is the set of all those ¢ € () which are contingent to certain vertices in
{y,y+1,...,n— 1,20} but not to any others, we know that every ¢ € Q ends
in a certain arrow 3(q) € B, and the second part of the induction hypothesis
yields

qoy—1 -0y = kqﬁ(Q)QS(ﬁ(q))—l T
for some scalar k£, € K. Using the first part of the induction hypothesis, we
infer that

Y pgqoy—1-c-on € Jp
7€Q\Q

and hence

> pgd(qay_i -+ ) = 0.

7€Q
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It follows that

gu(ov fo‘y—l"'al(l)) = Z ngﬁ(q)(ov kqfozs(,@(q))_lmal(l))
e

= D takg$(B(q)as(aa) -1+ 1)
9€EQ
— 0.

We thus get g, = 0 here. Since the case v = xg,y = 1 can be dealt with
analogously, we conclude that V' is indeed a A-module.
We now define homomorphisms

JU (%) V S U
by setting
1, if © =n;
o, = (1), ifzef{2,....,n—1}
0, else
and
1, if e € {1,n};
U, =<¢(1,1), ifee{2,....n—1}
0, else.

Obviously, ¥® equals the embedding JU — U. FEvery splitting y =
(xz) : V. — JU of ® would have to satisfy x; = 0 and hence y,, = 0, which is
impossible. Every splitting x = (vz) : U — V of ¥ would satisfy yi(1) =1
and hence QBXS(B)(l) # 0, contradicting the fact that y,, = 0. We conclude
that JU — U 1s reducible, a contradiction. Finally note that the second part
of (2)(a) is void if xg € {1,... ,n}.

Case 2: 29 € {1,... ,n}.

Since xg = 1 is trivial, we assume xq > 2. Note that the first statement of
condition (2)(a) is void in this case. Again we will construct a factorization
U of the inclusion JU — U such that & does not split. Irreducibility of
the inclusion will then force ¥ to split, and this, in turn, will imply that each
arrow 0 € D with t(d) = x¢ satisfies the second condition under (2)(a).
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Define the following representation V = ((V;), (94)) of I':

K, ife=1orae{eg+1,...,n};
S JEeR, ifee {2 w1
T ex,Ner, if x = a;
0, else.
fas if s(e) e {1} U{ao+1,...,n}
and t(a) € {xo+ 1,...,n};
(;l) if s(or) =1 and t(a) €4{2,..., 20— 1};
if s(a) = 1 and t(a) = w0
g 0 i (s t(@)) {2~ 1

(fOl( )a$0—1 0517O{a5(a)_1-..a1)7

if s(ar) € {2,...,20 — 1} and t(a) = xo;

F,, if s(a) = 2o and t(a) €{xo+ 1,...,n};
(far fa), ifs(a) €{2,...;20— 1} and t(a) €{zo + 1,...,n};
0, else.

Here, F, : ez,Ae; — K is defined by F,(w) = fow(l). Again, we have
to check that V' actually yields a A-module: let p = 3~ o pqq € e.le, be a
relation with p, € K, where () is a set of paths of length > 2 starting iny € VI’
and terminating in x € VI.

It is clear that g, = 0 whenever {x,y} Z {1,... ,n}. Moreover, ifa, 3 € AT
with t(a) = s(8) = 2o and {s(a),t(B)} C {1,...,n}, then we have fz,(1) =
Fslaaga)—1 - o1) = Fg(fo(1)ogy—1 - - - 1), which shows that g, is either fz,
or (fa, [pa). Hence g, =0 if xo & {z,y}.

If y = 2o, we get g, (w) = fuu(1) =0 for all w € e Aey.

The remaining case is © = xo. We will explicitly deal only with the situ-
ation y > 2 since the case y = 1 is analogous. First we compute ¢,(1,0) =
fu(D)ag,—1 -+ - a3 = 0. Moreover, we can write

goly_q -0 = kq(s(Q)as(S(q))—l e

with certain k, € K and d(q) € D for every ¢ € () (note that all those paths
g € (@ that involve vertices other than {1,...,n} are contained in the ideal

I by induction hypothesis, since I' does not contain oriented cycles). It then
follows that

Gu(0, fay_iar (1) Z/,ngg (0, k o fonis 1~~~a1(1))

9€Q

= Z fakq0(q)as(s(gy -1 1
q€Q
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= 0.

Hence V' is indeed a A-module. To define homomorphisms

JU (2:) V o) U,
we set
((1)), ifee{2,... ;00— 1}
o — ) Qw1 an, if © = wo;
’ 1, ifze{ag+1,...,n}
0, else
and
1, ife=1oraxe{eg+1,...,n};
T - (L,1), ifeed{2,...;20—1}
* T F, if © = w;
0, else.

Here F' : e;;Aes — K is given by F(w) = f,(1). It is easy to see that
these are indeed A-homomorphisms which yield a factorization of the radical
embedding of U. As seen before, ® never splits. Hence ¥ must split; let
X = (xz) : U — V be a splitting. For every § € D with t(§) = 2 we use the
equality x1(1) = 1 = x4s)(1) to obtain

dagsy—1 - a1 = gs(1)

= gsxs)(1)

= Xuo S50y 01 (1)

= Lsouisy 100 (1) Xe(8) Fag sy —yoon (1)

= [sausy—1on (Das)—1 - au,
which is what we claimed. O

EXAMPLES. In order to provide a better understanding of the different

cases that would have to be dealt with in a proof of “(1) = (2)(b)”, we include
here a series of examples where condition (2)(b) of the Conjecture is violated.

A non-trivial factorization of the radical embedding is given in each of these
cases.
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(a) Suppose I' is given by

3

1
N
2
51( )ﬁz

5
and the relations are
ﬁlozl = 620{1 and 61’)/1 == 0 == ﬁg’yz.

Here U is the unique uniserial with mast ay. The embedding JU — U can
then be factored non-trivially through a module with graph

1 3 4
2 2 2
U
572,

(b) Now I' is given by
3 1 4

b1 5

with relations

€Bay2 = Bry2 and By = 0 = Bron.
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Again, U is the unique uniserial with mast aq. In this case, the radical embed-
ding can be factored through the indecomposable with graph

1 3

4
2 2 2
3

/

(c¢) Consider the quiver I

1 4

(e 5] /
gé!

2
ag

3 |P
B

3

with relations
620{1 = 610[20(1 and 62’)/1 =0.

The radical embedding of the uniserial with mast ay can be factored through
the following indecomposable module:
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(d) In our final example, let I' be given by
1

a2 >51

and consider the relation

510&1 = Q0.
We can factor the radical embedding of the uniserial with mast ascy through
the module

REMARK. In order to tackle the remaining implication “(1) = (2)(b)” of
the conjecture, it may be convenient to have the following reformulation of
condition (2)(b) at hand:

(2)(b") There exists a family (w.,) € (pJ)°, such that for every x € VI and pn €
e dplesJ?p, we can find r € ey Je, with jp = rp+e,J?p and roag,_ -+ - Qy(y)Y =
rw, for ally € C and ra,_1 -+ ay5y0 € Kra,_y -+ g for all § € D.

Assume that condition (1) holds, i. e., that the canonical embedding JU —
U is irreducible, and that (2)(b’) is violated. We then get, for every family
(w,), a special vertex x and an element y € e,Jp/e,J?p from the negation
of this statement. Since (2)(a) holds, this allows us to “lengthen” U to a
uniserial module U/ in such a fashion that U is an epimorphic image of U
and soc [ ~ Ae,/Je, (note however that there is a choice involved: U is not
uniquely determined by U and p). Here are two potential approaches to the
construction of a module M through which the radical embedding of U factors
non-trivially:



26 CHAPTER 1. UNISERIAL MODULES OVER TRIANGULAR ALGEBRAS

(a) Let M be the module obtained from gluing the socles of {7 and D(e(x)A)
(where D = Hompg(—, K') denotes the usual duality). The problem then is to
find a “good” map from JU to M.

(b) This time, we begin by gluing the socles of U and JU together to obtain
M: this allows for a natural embedding of JU. Of course, this particular
embedding splits, and we have to extend M to a module M having M as an
epimorphic image in order to prevent this from happening.

1.3. Triangles of Uniserials

In this section, we define triangles of uniserials and their tips, and then
classify all those triangles over triangular algebras in combinatorial terms on
the basis of quiver and relations.

The prototype of a triangle of uniserials is given by the Auslander-Reiten-
quiver of the path algebra of a linearly oriented diagram A,, . i. e. of the algebra
KT where I is given by

In general:

DEFINITION 1.3.1. A triangle of uniserial A-modules is a full translation
subquiver of the Auslander-Reiten-quiver of A having the following form:

S\

nll — Un-1,2
— Un—-2,2 — Un-2,3

AVAVAN
/N / AWA

Ug----Uip U1 — == Uiy
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where n € N and the U;; are pairwise non-isomorphic uniserial left A-modules
with
length(U;;) =1 for all 7 and j.
The module U, ; is called the tip of this triangle; the triangle is called
mazximal if it is not properly contained in a bigger triangle of uniserials.

Note that the length restrictions imply that the maps U; ; — U, 11, ; are (iso-
morphic to) radical embeddings and the maps U; ; — U;_; j11 are (isomorphic
to) socle factor projections, compare 1.1.3. Moreover, if A is triangular, then
the requirement that the U;; be pairwise non-isomorphic is actually a con-
sequence of the rest of the definition: the U;; clearly have different sequences
of composition factors. Furthermore, every triangle of uniserials contains at
least one simple module, which implies that there can only be finitely many
different triangles. The simple modules are precisely the triangles consisting
of a single module.

Continuing to employ the notation introduced at the beginning of the pre-
vious section, we will use that section’s results in the following form:

ProprosiTION 1.3.2. (1) If the natural embedding JU — U is irreducible,
then
Bagp—1---a1 € Jp for every B € B
and
dag(sy—1 a1 € Kayg)—y---a1 for every 6 € D.
(I If B=C =D =@ and U is not simple, then JU — U is irreducible.
(I11) If the natural epimorphism U — U/ soc U is irreducible, then

Qpoy v ayyyy €pJ  for everyy € C

and
Qpo1 - 0y5)0 € Kay_y -+ ags)  for every 6 € D.
(IV) If B=C =D = @ and U is not simple, then U — U/soclU is

wrreducible.

ProoF. Part (I) was proved as “(1) = (2)(a)” of Conjecture 1.2.1 in the
last section while part (II) is a trivial consequence of the same conjecture’s
“(2) = (1)7, which is also known to be true. The parts (III) and (IV)
follow by duality: if D : A-mod — A°P-mod denotes the usual duality
D = Homg(—, K'), then the dual of the natural epimorphism U — U/soc U
is just the natural embedding rad DU — DU’ one of these maps is irreducible
if and only if the other is. The results follow now from (I) and (II) using the
fact that the quiver of A° is I'°P, that the inverse path to p can be chosen as
mast for DU, and that the Jacobson radicals of A and A°P coincide. O
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The following lemma provides the missing link between triangles of uniseri-
als and radical embeddings resp. socle factor projections.

LEMMA 1.3.3. If B=C = D = @, then the uniserial module U appears
in a triangle of uniserials.

PRrROOF. First note that the condition on U is obviously inherited by all
subfactors of U; we thus have only to show that the short exact sequence

U\
0*>JU\/769 /U/SOCUHO

JU/soc(JU) ~ J(U/socU)

is almost split, since we know from Proposition 1.3.2 that all appearing maps
are irreducible or 0. To this end, it clearly suffices to prove that 7(U//socU) =
JU. Using B=C = D = @, we see that a projective resolution of U/soc U is
given by

Ae, —2> Ney U/socU —0

and that
D(p-—)
0 — JU — D(e,A) —=D(e1A)

is an injective resolution of JU. However, the map D(p - —) is just N (— -
p) (with the Nakayama functor A' = D Homu(—, A)), the kernel of which is
T(U/socU). N

We are now in a position to prove the announced characterization of tri-
angles of uniserials and their tips. We say that an arrow a € AT leaves the path
p=1-"522 ... 2%y ifs(a) € {1,... ,n} and a & {ay,...,a,_1}. The
arrow « enters p if t(a) € {1,... ,n} and o € {ay,...,a,-1}. Moreover, we
say that the path p is mazimal with property P if p satisfies P, and whenever
¢ 1s a path such that p is a proper subpath of ¢, then ¢ does not satisfy P.

THEOREM 1.3.4. The uniserial module U with mast p appears in a tri-
angle of uniserials if and only if every arrow leaving p leaves at the terminal
vertex of p and every arrow entering p enters at the starting vertex of p. The
module U is the tip of a mazimal triangle of uniserials if and only if the mast
p of U is maximal with the property that p is not contained in the ideal of
relations [ and every leaving arrow leaves at the terminal vertex and every
entering arrow enters at the starting vertex. Fvery triangle of uniserials is
contained in (at least one) maximal triangle.
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PROOF. Returning to the notation introduced in the last section, the prop-
erty that every arrow leaving p leaves at the terminal vertex of p and every
arrow entering p enters at the starting vertex of p is clearly equivalent to the
statement B=C =D = @.

First assume that U appears in a triangle of uniserials. Then so do all
its subfactors. Hence it suffices to prove that there cannot exist any 8 € B
with s(3) = 1, any v € C with t(y) = n, nor any § € D with s(§) = 1 and
t(d) = n. We have already noted that, in case U is not simple, both the radical
embedding and the socle factor projection of U are irreducible. Taking this
into account, Proposition 1.3.2 does the job since none of the relations in [
defining A can contain a single arrow.

Clearly, if U appears inside a triangle of uniserials but not as its tip, then
the mast of the uniserial sitting “over” U is a proper prolongation of p still
satisfying B = (C = D =0, and p can not have been maximal.

Now assume that p is not maximal. Then we can find a path p’ = ap (or
p' = pa) with a € AT such that, if B’, C’, and D" denote the corresponding
sets of arrows, we have B’ = ¢/ = D’ = @. This latter condition, together
with p € I, implies that there exists a uniserial left A-module U’ with mast
p'and JU' = U (or U'/socU" = U). Obviously, U’ is the tip of a triangle of
uniserials which properly contains U.

If p satisties B = C = D = @, then there exists a path p” (with corres-
ponding sets of arrows B”, C", D") that contains p as a subpath and is maximal
with the properties B” = C" = D" = @ and p” € [. The path p” is then the
mast of the tip of a maximal triangle of uniserials containing U. O

We will see in 2.3.3 that, over a hereditary algebra, every finitely generated
uniserial module U with the property that both the radical embedding JU —
U and the socle factor projection U' — U/ soc U are irreducible is the tip of
a triangle of uniserials. This is false over triangular algebras, and armed with
the results we have, we can easily construct a counterexample:

EXAMPLE. Consider the quiver I’
1

=

a>5

a3

2

3

4
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and the relations
aprp = 0y and  aszap = azd.

If U is the unique uniserial module with mast asasaq, then JU — U and
U — U/ soc U are both irreducible since condition (2) (and its dual) of Con-
jecture 1.2.1 are satisfied. However, the maps J?U — JU and U/soc U —
U/ soc® U are not irreducible because condition (2)(a) (resp. its dual) are vi-
olated. Furthermore, both the radical embedding of U/socU and the socle
factor projection of JU are irreducible, while the radical embedding and socle
factor projection of JU/soc(JU) are not. Moreover, it is straightforward to
check that 7(U/soc U) = JU. Therefore, the “degenerate triangle of uniserials
with tip U” looks like this:



CHAPTER 2

Uniserial Modules over Hereditary Algebras

2.1. Notation and First Results

This chapter contains our results concerning finitely generated uniserial
left modules over split hereditary finite-dimensional algebras. The first section
provides the notational framework and presents some elementary facts. The fol-
lowing section examines those uniserials which have uniserial Auslander-Reiten
translate, and the third section exploits the results of the previous chapter to
provide a full understanding of triangles of uniserials in the hereditary situ-
ation.

Throughout this chapter, I' will be a finite quiver without oriented cycles,
K will be a field, and A = KT will be the split hereditary finite-dimensional
path algebra defined by I

We call a path p’ a right subpath of the path p if there exists a path r
with p = rp/. Left subpaths are defined similarly. Two paths p;, p; are called
comparable if one is a left or right subpath of the other.

Following [14], if p is a path in [', a detour on p is defined to be a tuple
(a, p') where o« € Al and p’ is a right subpath of p with t(p') = s(a) and
such that ap’ is not a right subpath of p. Since our quiver does not have any
oriented cycles, the detour is uniquely determined by «. By abuse of language,
we also call « itself a detour on p and write “a { p” for this situation.

Now let a scalar A, € K be given for every detour alp. Define I(p, (As)arp)
to be the left A-submodule of Ae; generated by the elements aogq)—1 -+ a1 —
AaQ(a)—1 -1 for al p and Baggy—y -+ a; for all non-detours 3 that leave p.
We can then define a left A-module U(p, (As)arp) by setting

U(p; (Aa)arp) 7= Aer/1(p; (Aa)arp)-

We write U(p) instead of U(p, (X)) if Ay = 0 for every a l p (in particular if
p does not admit any detours whatsoever). The module U(p, (A,)) is uniserial
with mast p, and every uniserial A-module with mast p is isomorphic to a
U(p, (As)) for a suitable family of scalars (A, )ay. Moreover,

Ulp, (Xa)) 2 U(p, (pa)) <= (Aa) = (pta)-
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This means that the varieties V, introduced in [14] in order to parameter-
ize uniserials are full affine spaces in the hereditary case and provide a 1-1
parameterization.

In general, the problem of classifying those finite-dimensional algebras hav-
ing only finitely many finitely generated uniserial left modules is very complic-
ated, compare [15]. In the hereditary situation however, it is trivial:

LEMMA 2.1.1. The finite-dimensional hereditary algebra A = KT admits
infinitely many non-isomorphic uniserial left modules if and only if |K| = oo
and I' contains a subquiver of the form

|

J

Proor. If A admits infinitely many uniserial modules, then there must be
one path p that serves as mast of infinitely many uniserials, since there are
only finitely many paths. By the remarks preceding the lemma, we must then
have infinitely many different families (A, )ayp, which implies that K is infinite
and that there exists at least one detour on p.

On the other hand, if a path p with a detour « exists and A is infinite, we
can concoct infinitely many different families (A, )ay, vielding infinitely many
non-isomorphic uniserial modules. O

2.2. The Auslander-Reiten Translation

This section contains the classification of those finitely generated uniserial
modules U over a split hereditary finite-dimensional algebra which have a uni-
serial Auslander-Reiten translate 7. We will explicitly describe the Auslander-
Reiten translate, using the notation developed in the preceding section.

Initially, certain examples suggested to us that, over hereditary algebras of
finite type, the uniserials might be “connected to projectives or injectives via
uniserials”; by which we mean that for every uniserial U, either all the modules
7'U (i € N) are uniserial or undefined or else all the modules 7='U (i € N),
are uniserial or undefined. Closer inspection proved this conjecture to be false;
we managed to classify all those hereditary algebras of finite type for which it
does hold, and this classification will conclude the section.

PROPOSITION 2.2.1. Let p = 1 2% 2 22 ... 23 5y be a path in [ and
Ao € K for every alp. Write U := U(p,(Ay)). Then 7U is defined and

uniserial if and only if the following two conditions are both satisfied:
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(1) There is precisely one arrow (3 leaving p.
(2) Writing B : 1 — x, all paths ending in x and not having Bo;_q -+ o as
left subpath are comparable.

If this is the case and if p' is the longest path ending in x and not having
Boy_y -+ as left subpath, then p' has the same detours as p (in fact, there
can only be at most one detour), and we have

U =U(p, (\))-

Before we prove the proposition, we give some examples to illustrate the
condition appearing in the statement:

EXAMPLES. (a) Consider the quiver I

INA

If U is the unique uniserial with mast p = ayasazay, then 7(U(p)) is not
uniserial.

(b) If T is given by
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and U is again the uniserial with mast p = ayazasay, then 7U = U(Bagysy2y1).
We see that, in general, the lengths of U/ and 7U can be arbitrarily far apart.
(¢) The module 7(U(p)) is not uniserial in the situation

(d) In the case

where, again, p = ayaszasay, we have 7(U(p, Ag)) = U(agaryavy1, As). Here
we get a whole family of Auslander-Reiten sequences with uniserial end terms,
indexed by elements from the base field K.
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(e) Finally, if " is given by

a2
a3

4

then 7(U(p, Ag)) is not uniserial.

PROOF OF THE PROPOSITION. Let D = Hompg(—, k') denote the usual
duality and let NV = D Homu(—, A) be the Nakayama functor. For x € ¢;Ae;,

we have N( Ae; ——> Ae; ) = D(e;A) MD(@A) . Furthermore, if M €

¢

P M 0

A-mod is indecomposable and non-projective and P,

is a minimal projective resolution, then 7M = kern V().
If ¢ is a path in I ending in ¢ € VI, let ¢* € D(e;A) be the dual element
defined by

“() 1, ifg=r;
T _=

1 0, otherwise
for every path r ending in .

Now let B = {[3 € Al |s(B) e {L,... ,n}} \{a1,...an_1} be the set of

arrows leaving p. We have a minimal projective resolution

ﬁGEBBAet(ﬁ) =) Aey U 0

where the maps xp : Aeygy — Aey are right multiplications with the elements

"y {(ﬁ — ApQy(g)-1- - Os(9))as(gy-1 - an, TE(B) € {1, n;

B ﬁas(ﬁ)—l T Qy, otherwise.

The maps V'(xg) : D(egsA) — D(e1A) are then induced by left multiplication
with the same elements, which implies that N(Xg)(ef(ﬁ))(q) = er(ﬁ)(uﬁq) =0
for every # € B and every path ¢ ending in 1 (since the lengths of all paths
appearing in ugq are greater than 0). We have thus found the K-linearly
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independent elements (0, ..., €f), - - ., 0) in kern(N(x))Nsoc @gep DleysA) =
sockern NV'(y) = soc7U. Hence we need to have #B = 1 if 7U is to be
uniserial.

We will assume from now on that #B = 1, and we will denote the single

element of B by (3.
Case 1: t(8) € {1,... ,n}.

This situation is rather easy; the following claim describes 7U completely:

Claim: A K-basis of kern V() is given by
{q* |g a path ending in t(3) and not having
Baggy—1 -+ a1 as left subpath}.

Proof of the Claim: Using the bases {¢* | ¢ a path ending in 1} of D(e;A)
and {(Bagg)-1---019)" | ¢ a path ending in 1} U {¢" | ¢ a path ending in t(3)
and not having Bagg)—1 -+ ay as a left subpath} of D(eyg)A), the linear map
N (x) is given by the matrix

with kernel as claimed.

If we now assume that all paths ending in t(3) and not having Bagg)—1 - - - a1
as left subpath are comparable, we can denote by p’ the longest such path. Then
there is a unique A-isomorphism

U, (1y)) — 7U = kern V()

*

which sends the image of e,y in U(p', (e ) to (p')*.
On the other hand, if there are two non-comparable paths ¢, ¢2 ending in

t(3) but not having Bagg)_; - - - a1 as left subpath, then the submodules of 7U

generated by ¢f and ¢; respectively are clearly not comparable.

Case 2: t(8) € {1,... ,n}.

Again, we describe 7U first:

Claim: A K-basis of kern V() is given by

{(Oét(ﬁ)—1 o o1q)" + Ag(Baspy—1 - a1q)" | ¢ a path ending in 1}
U {q* | ¢ a path ending in t(3) and having neither
ﬁas(ﬁ)—l “+r Q1 NOT Qy(gy—1 - as left subpaths}.

Proof of the Claim: This time, we use the basis {(Bayg)-1---a1¢)* | q a
path ending in 1} U {(agg)-1---a1q)" | ¢ a path ending in 1} U {¢* | q a
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path ending in t(3) and having neither Bagg)—1 -+ a1 nor aygy—1 -+ - ay as left
subpaths} of D(eys)A); the map M (y) is then represented by the matrix

1 —A

1 —A
the kernel of which is as given above.

Let’s assume now that all paths ending in t() and not having Bagg)—1 - - o
as left subpath are comparable; again we can denote by p’ the longest such path.
It is then possible to write p’ = ay(g)—1 - - - c1p” with some path p” ending in 1.
Then there is a unique A-isomorphism

U, (1y)) — 7U = kern V()

sending the canonical top element of U(p', (1)) to (p')*+Xg(Bagsy—1 - - - a1p”)*.

Conversely, if there are two non-comparable paths ¢, g2 ending in t(3) but
not having Bag(s)—1 - - - oy as left subpath, then we can define elements w, € 7U,
s =1,2, as follows:

(at(m-1- - 01qy)" + As(Bag@)-1 -~ 1),
W, 1= if g5 = ay(g)—1 - - - a1q, for some path q;;
q;, if g, does not have ay(g)—1 -+ a; as left subpath.

The submodules of TU generated by w; respectively w, are clearly not com-
parable. O

For the convenience of the reader, we include here the dual version of Pro-
position 2.2.1.

PROPOSITION 2.2.2. Let p =1 2% 2 22 ... 23y be a path in [ and
Ao € K for every alp. Write U := U(p,(Ay)). Then 771U is defined and
uniserial if and only if the following two conditions are both satisfied:
(1) There is precisely one arrow ~ entering p.
(2) Writing v : @ — 14, then all paths starting in x and not having a,—y - - - a7y
as right subpath are comparable.

In this case, if p' is the longest path starting in x and not having c,_1 « - - a;7y
as right subpath, then

U(p), ife g {l,... ,n};

_1U _
! U(p', (o)), otherwise. Here, pi, =

0, ifyFalp;
)‘% Zf 7=

In the initial examples we studied, it was a comparatively frequent phe-
nomenon that every uniserial /' € A-mod had the property that either all
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the modules 7°U for : > 0 were uniserial or undefined, or all the modules
77U for i > 0 were uniserial or undefined, i. e. all uniserials were connec-
ted to projectives or injectives via a chain of 7-translations that only involved
uniserials. Using Proposition 2.2.1 and its dual, we can completely pin down
the hereditary algebras of finite type for which this is true:

COROLLARY 2.2.3. Let I' be a quiver having one of the Dynkin diagrams
A, D, Es,Er, Es as underlying graph and write A = KI'. Then there exist
uniserial, non-projective and non-injective modules Uy, ..., U,, € A-mod with
TU; = Uiy for i € {2,...,m} and such that neither TU; nor 771U, are
uniserial if and only if I' contains one of the following quivers or their opposites
as a subquiver:

0 1, ), ), V), Vi),

LT T | o
arrows arrows / / / /
b b |
f | | |
PRrROOF. The above conditions are clearly true for I' if and only if they are
true for I'°P. We will use this fact repeatedly in the sequel.

“«<=": For each of the situations I to VI, we will exhibit a path p such that
U(p) plays the role of U; in the above condition. The value of m is also given.

I II 111
mLIT mZ)IT m:)l $9

¢ ¢ T
p[¢ pb b
¢
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“==": Let p be the mast of U;. Because of the structure of I', it follows that
Case 1. For all vertices i on p, we have indeg(i) 4 outdeg(i) < 2.
Since U(p) is neither projective nor injective, I' contains then either

a) } or b)

I
I I
I I
f I

which leads to another case distinction:
Case 1.a) Since 7U(p) is not uniserial, Proposition 2.2.1 yields that in fact the
following subquiver has to be present:

>0
arrowsij/
f
B
LY

Let p; be the longest path in I' starting in s(«) and not containing « (note
that because of the structure of the underlying graph of I', this specification
is unambiguous). Let ¢; be the longest path terminating in t(p;) and not
being a left subpath of p;. Then define p, to be the longest path starting
in s(¢q1) and not being a right subpath of ¢;. Continue in this fashion until

the end of the arm is reached. Now list the vertices of ¢; in opposite or-
der: t(q;), @(1 ), . ; ), (g;). By Proposition 2.2.2, we then have 77'U(p) =
Ulpr), 772U(p) = Ulen), 77°U(p) = Ulen), - ;v U (p) = Uleyn),
PR (p) = Ulpg), 7040 (p) = Ule), .. .m0+ (p) = Ule),

1
1
2
2
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7=+t (7 (p) = U(ps) and so on. Eventually, an injective module is reached,
and hence this case is impossible.
Case 1.b) If length(p) = 0, then I' must contain the subquiver

>0
arrows

f

-~

f

in order for TU(p) not to be uniserial. This situation however has already been
shown to be impossible in Case 1.a).

If length(p) > 0, again using the fact that 7U(p) is not uniserial, we can at
least find a subquiver in I' of the form

- N =<

where k > 1 is as large as possible such that indeg(i) = outdeg(:) = 1 for
2 < i < k. If outdeg(1) > 2, then we are in situation I) and are done. If
indeg(1) = 0 and outdeg(l) = 1, then 77%U(p) is injective, and thus this
cannot happen. The remaining case is indeg(1) = 2 and outdeg(1) = 1, which
is covered by II°P.

Case 2. There exists a vertex © on p with indeg(:) 4 outdeg(i) = 3.

Since U(p) is neither injective nor projective, we are left with the following
(mutual exclusive) cases up to opposites. Again, we mark the path p and give
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its length.

L

Case 2.a) As in Case l.a), we define p; to be the longest path starting in s(«)
and not containing «, and continue with ¢, ps, g2 and so on. Again, we see
that 7='U(p) is uniserial or undefined for all # > 0, a contradiction.

Case 2.b) Since 7U(p) is not uniserial, I' must in fact contain the subquiver
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Iflength(p) > 2, then we are in situation I1I; hence we will assume length(p) = 1
from now on. The case outdeg(s(a)) = 2 is covered by 1V; if outdeg(s(a)) = 1
and indeg(s(a)) = 1, then 771U (p) = U(«) is injective. We are thus left with
the situation

where p = ~. Then 77'U(p) = U(f'a) and 772U(p) = U(y'yaa’). Since
772U(p) is not injective, we have either indeg(s(a’)) = 1, in which case we are
dealing with situation VI°?, or indeg(t(+’)) = 1, which is impossible since it
develops like Case 1.a) above.

Case 2.c) Since 7(U(p)) is supposed to be non-uniserial, the following sub-
quiver

needs to be present. This however is situation 11°P.
Case 2.d) Proposition 2.2.1 leaves two possibilities for non-uniserial 7U(p):

1) and 2)
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Case 2.d.1) We have length(p) = 2 because of the shape of I'. The situation

with p = 43’ yields 771U (p) = U(a/#'3) which in turn develops as in Case 1.a)
and is hence excluded.
Case 2.d.2) If length(p) > 3, then we are dealing with case III. Now assume

length(p) = 2. Since 77'U(p) is not injective and because

_— < =<

|

is not of finite type, we are left with the case VI°P.
Case 2.e) Since 7U(p) is not uniserial, we are either in situation IV or we deal
with

V8

|

>2

J

b
The shape of I' dictates that indeg(/3) = 0, which implies that this situation
develops again as in Case 1.a) and is hence impossible.

Case 2.f) If we are not in situation V, then length(p) = 3 and ' has the
subquiver

»
ll-e
an

e
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with outdeg(3) = 0. If p; is the longest path in I' terminating in t(«) and not
containing o, then 7U(p) = U(py) is uniserial, a contradiction.
Case 2.g) Since 7U(p) is not uniserial, we have either

1) or 2)

f I

Case 1) is covered by II°? and case 2) by V.
Case 2.h) Again, 7U(p) being uniserial forces us to distinguish two subcases,

but they both cannot appear in a quiver of finite type.
Case 2.i) is covered by VI°P. O

2.3. Triangles of Uniserials

In this section, we will exploit the results of Section 1.3 to describe the
much more transparent hereditary situation. We will see that the maximal
triangles of uniserials over hereditary algebras are disjoint and that virtually
all irreducible maps between uniserial modules (more precisely: all but the
radical embeddings of projectives and the socle factor projections of injectives)
are in fact embeddable in such maximal triangles. An interesting consequence
of this is the fact that, in the wild case, every regular uniserial is quasi-simple
or the tip of a triangle of uniserials.

We start with strengthenings of the results from Section 1.3 for the hered-
itary situation.

THEOREM 2.3.1. Fvery triangle of uniserials over the hereditary algebra
A = KT is contained in a unique maximal one. In particular, different maz-
imal triangles are disjoint.

PRrROOF. From the proof of Theorem 1.3.4, we know how the masts of the
tips of the maximal triangles containing a given uniserial look like. In the
absence of an ideal [ of relations, it is clear that there is always precisely one
such mast, giving rise to precisely one containing maximal triangle. O

THEOREM 2.3.2. Let U € A-mod be a uniserial module over the heredit-
ary algebra A = KT Ifp=1 %2 22 ... 23 5 is a mast of U, then the
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following conditions are equivalent:

(a) The radical embedding JU — U is irreducible.

(b) We haven > 2, outdeg(j) =1 forj =1,...,n—1 and either outdeg(n) = 0
orindeg(l) =1 forl=2,... n.

ProoF. Taking into account the proven parts of Conjecture 1.2.1 and the
fact that we don’t have any relations here, it remains to be shown that, if
there exists arrows ' : m — y and v : 2 — @ with z € {1,... ,n} and
i € {2,...,n}, then JU — U is not irreducible.

Assuming that such arrows exist, we will construct a representation V' =
((Vz), (g9a)) and non-splitting A-linear maps ¢ : JU — Vand ¥ : V — U
such that U@ equals the radical embedding JU — U. As in the previous
chapter, we identify U with the representation U = ((Uy,), (f,)) of I', where

0. — {K, ifze{l,... nk

0, else

and
Jo, =1d for every i € {1,... ,n—1}.

In order to define V', set

K, ifze{ly,z}
Ve=S KoK, ifee{2,...,n};
0, else
(f(i)’ if s(e) =1 and t(a) €4{2,...,n};
fo® fo, i {s(a)t(@)} C{2,....,n};
g=9(2), ifa=y
(0,1), if a = p;
0, else
The homomorphisms
o=(P, U=(V,
JU (%) V S U

are defined by
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and

1, if v =1;
U, =<¢(1,1), ifee{2,....n—1}
0, else.

It is straightforward to check that these are indeed A-homomorphisms and that
U equals the embedding JU — U. If vy = (x,) : V — JU were a splitting
of @, then we would have x; = x, = 0, which would imply y; = 0, but this is
impossible. Every splitting x = (vz) : U — V of ¥ would satisfy yi(1) =1
and hence x,(1) = (0,1), implying x, # 0, a contradiction. O

A typical mast p of a uniserial module with irreducible radical embedding
hence looks like one of the following:

Either i) or ii)
ANY4 N
7 |
p 4 p
7 |
N

Obviously, condition (i) corresponds to a projective module U; furthermore,
condition (ii) is self-dual and inherited by all subpaths. These observations,
combined with the dual version of the above theorem and with Theorem 1.3.4,
already constitute the proof of the following corollary.

COROLLARY 2.3.3. Let U € A-mod be a uniserial module with length n.
(a) If the radical embedding JU — U is irreducible, then there is a chain of
irreducible maps

JUW — U — e — JU — UL

(b) If the socle factor projection U — U/ soc U is irreducible, then there is a
chain of irreducible maps

U— UfsoclU — - — U/ soc" U — U/ soc"" D 1.

(c¢) The following are equivalent:

(1) U is the tip of a triangle of uniserials

(2) U is simple or both the radical embedding JU — U and the socle
factor projection U — U/ soc U are irreducible maps.



2.3. TRIANGLES OF UNISERIALS 47

(3) Ifp=1-"25%2 22 ... %y is a mast of U, then outdeg(j) = 1 for
j=1,...,n—=1and indeg(l) =1 forl=2,...,n.
(d) If U is not projective and JU — U is irreducible, then U is the tip of a
triangle of uniserials.
(e) If U is not injective and U — U/ soc U is irreducible, then U is the tip of
a triangle of uniserials.

Note that, in this corollary, we were able to characterize the tips without
alluding to combinatorial terms such as masts or leaving arrows. This allows us
to combine these results with the well-known information about the structure
of Auslander-Reiten quivers of wild hereditary algebras contained for example
in [2, Theorem 4.15]:

COROLLARY 2.3.4. Let A = KT be a wild hereditary algebra. Then all
but finitely many uniserial modules in A-mod are reqular and quasi-simple.

PRrROOF. The dimension vectors of the preinjective (resp. postprojective)
modules can be obtained through iterated application of the Coxeter trans-
formation (resp. its inverse) to the dimension vectors of the indecomposable
injectives (resp. projectives). In the wild case, the Coxeter matrix has expo-
nential growth, and since the Loewy length of A puts an upper bound on the
lengths of uniserial A-modules, almost all uniserials are regular. The regular
components are isomorphic to Z A, and all irreducible maps are either injective
or surjective. Combined with 1.1.3, this yields that both the radical embedding
and the socle factor projection of the non-quasi-simple uniserials are irredu-
cible. Using Corollary 2.3.3, we see then that these modules are actually tips
of triangles of uniserials. On the other hand, we know that there can only exist
finitely many such triangles. O
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Coxeter Polynomials of
Finite-Dimensional Algebras






CHAPTER 3

Methods to Determine Coxeter Polynomials

3.1. Introduction

The purpose of this chapter is to establish a reduction formula for the char-
acteristic polynomial ¢, of the Coxeter matrix of a split finite-dimensional
algebra A of finite global dimension. In fact, when A is put together from
subalgebras in a certain natural fashion, we express ¢, in terms of the Coxeter
polynomials of these subalgebras. In concrete computations, repeated applic-
ation of this reduction principle offers a significant edge over direct use of the
definition. This result will be presented in the following section; it has recently
been published in [5].

Section 3.3 will then specialize on the hereditary case, where this reduc-
tion principle yields explicit expressions for the Coxeter polynomials of large
families of quivers. Moreover, a combinatorial interpretation of the entries of
the Coxeter matrices of hereditary path algebras allows us to establish formu-
las for Coxeter polynomials of some quivers which cannot be treated by the
above-mentioned reduction process. These results were already presented in
[4]; we include them again here in order to illustrate the method.

Throughout, I' will be a finite quiver with vertex set VI' and A = KT'/I
will be a path algebra modulo an (admissible) ideal of relations over a field K
such that dimg A < co. In order to avoid excessive subscripts, we will identify
a vertex e € VI' with the corresponding primitive idempotent of A given by
the path of length 0 centered at e. Recall that the VI x VI' matrix

Ca = (dimg eAf) e, pevrxvr

is called the Cartan matriz of A and that, in case |Cy| = det(Cy) # 0 (which
is always satisfied if A has finite global dimension), the Coxeter matriz of A is
defined as

(I)A = _tCACX17

where '’y denotes the transpose of the matrix C'y. We will study the Cozeter
polynomial ¢p(T) = |TE — ®p] of A.
51
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3.2. The Reduction Formula

Let r be a vertex of the quiver I and p a path in I'. We say that p properly
passes through r, if p can be written in the form p = pyrp; with paths pq, ps in
I' of length > 1.

For n € Ny, we say that p properly passes through r precisely n times, if
p may be written in the form p = p,y1rp,r---rp; with paths py,...,puyq of
length > 1 which do not properly pass through r.

Moreover, an admissible ideal I of relations in KT is called r-separated,
in case [ can be generated, as an ideal, by a set R of relations such that for
every »; \;p; € R with \; € K\ {0} and distinct paths p; in I', none of the p;
properly passes through r.

We denote by I' \ {r} the quiver obtained from I' by deleting the vertex r
and all adjacent arrows. If I is the empty quiver without vertices and arrows,
then KT is defined to be the trivial zero-dimensional K-algebra with Coxeter
polynomial 1.

The conclusion of the following lemma essentially allows us to count nonzero
residue classes of paths in A in a similar way as one counts paths in the case
of a finite-dimensional path algebra:

LEMMA 3.2.1. Consider a finite-dimensional K-algebra A = KTU'/I and
let r € VI' be a vertex such that I is r-separated. Then
(a) dimg rAr =1
(b) If we set T :=T\ {r} and A := KT'/(I N K1), then the assignment

URUvPHwr—— uv 4+ w

yields an isomorphism

Ar@rA @ A A
of A-A-bimodules.

PROOF. For n € N, we denote by P the K-subspace of KT generated
by all paths starting and ending in r and properly passing through r precisely
n — 1 times. Let R C I be a generating set of relations which do not involve
paths properly passing through r.

As an immediate consequence of the definitions, we get: If p is an element
of R, and p is a path starting in r, while ¢ is a path ending in r, then

(1) gop € |J P
n>1

Hence,

(2) rlr =10 P™.

n>1
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We write P := P /(I 0 P™). If moreover we denote by J the Jacobson
radical of A, equation (2) yields

(3) rdr = @ P,
n>1
Next, we prove
P~ ®” P,
where ®" P is the n-fold tensor product of P with itself, taken over K.
Together with dimg A < oo and (3), this will give us P) = 0 and hence

statement (a).
The exact sequence

In P P P 0

induces the upper sequence in the following commutative diagram, which has
exact rows:

& (® PV e (InPY) 0@ PV) — @ pl) — g pl) —(
k=1

fl L

10 pP® pn) p») 0

>

Here, the maps f and ¢ are defined by
g(pL@p2 @+ Q@ pa) =pip2--pa

and

f(pr @ Qpp1 QT QPryr @+ @ Pu) = Pr** Ph—1TPks1 " P

In order to prove that h is an isomorphism, it suffices to show that f is onto
since ¢g is an isomorphism. We only have to consider the case n > 2. Pick
x € 1N PM and write 2 = Y, Xigipipi with A, € K\ {0}, p; € R and
paths p;, ¢; starting resp. ending in r. Because of (1) and (2), we may assume
qipiPi € P® for all i. Write Pi = piarpi1 and ¢; = @irq; where p;o and g;
have smallest possible length > 0. Then we have ¢;1p;pi2 € I N P®M . Moreover
either p;; = r and ¢;, € P(”_l), or pi € P=1) and Gz = 1, or else there is
some k; € {2,...,n — 1} such that p; € P=ki) and Qia € P&i=1) Tn either
case, we get ¢;p;p; € im f since multiplication of paths yields an isomorphism
®F PM 5 pH) - Consequently, « € im f.

Now consider the map p : Ar@xrA & A — A from part (b) of the lemma.
Obviously, it is well-defined, A-A-bilinear and surjective. In order to find a left
inverse v to y, we start with a K-linear map v : KT — Ar@grA & A, defined
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on the paths p in I' as follows: if p can be written in the form p = pyrp; with
paths py, pa (not necessarily of length > 1), we set

vo(p) == (p2+ Ir) @ (pr + 1) @ 0.

This is well-defined, because if p = ¢arq; is a different factorization of this
kind, then either ¢; = uq} or ¢; = ¢hu with a suitable v« € P, But PM) C [
in view of (a), and thus (g2 + Ir) @ (g1 + 1) = 0. Analogously, one derives
(p2+Ir) @ (pr+rl)=0.

If p cannot be written in the form pyrp;, we set
w(p)=0&(p+ 1IN Kf).

Now suppose & = >, \jqipipi € I as above. If p; can be written in the form
pi = pierpa with paths p;y and pi, then gpipiz € Ir and vo(gipipi) = 0.
Similarly, if ¢; admits a factorization ¢; = ¢;2r¢i1, we have vo(gipip;) = 0. The
remaining case 1s ¢;p;p; € [ N Kf, and again we obtain vo(g;p;p;) = 0. Thus

vo(x) = 0 and 1 induces a K-linear map v : A — Ar@grA & A which by
construction is left inverse to p. 0

The union of quivers is given by the union of the vertex sets and the disjoint
union of the arrow sets.
Now we are in a position to prove the main result:

THEOREM 3.2.2. Let I'y, Ty be two finite quivers with VI'y N VI'y = {r},
and let T be the union of I'y and I'y. Suppose that I C KT is an r-separated
ideal of relations such that A := KT/ is finite-dimensional. Set I'y := 'y \ {r}
and Ty := Ty \ {r} and define the algebras Ay, Ay, Ay, Ay canonically:

A= KT /(INKT;) and A;:=KT;/(INKL;) fori=1,2.

Then
1O, = [Cx, 1 1O, =Cx,]  and  [Ch] = |Cp, ||Ch, |-

If this last determinant is nonzero, the Coxeter polynomial of A s
QbA = ¢A1¢A2 + ¢A1¢A2 - (T + 1)¢[\1¢[\2-

PROOF. We need some additional notation: for every e € VA, let a, :=
dimg rAe and a. := dimg eAr. Accordingly, for every e € VAQ, set b, =
dimg rAe and IN)S := dimg eAr. We consider a, a, b and b as column vectors
and write ', Cy, Cy, C1, Cy instead of C, Cr,s Ca,s Ckys Ok,

First we observe that rAje = rAe and eAyr = eAr for all e € VI
since there are no arrows connecting VI, and VI3 and dimg rAr = 1 by
Lemma 3.2.1. Moreover, I N KT is an r-separated ideal in KT’y because every
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relation which does not involve any paths properly passing through r lies either
in KTy or in KT'y. Applying Lemma 3.2.1 to Ay, we see that:

dimg rAir =1 and

dimp eA; [ = dimg eAlf + acay foralle, f e V1.

Cy+alala
Clz( 1—t|—aa a)7
a 1

and by subtracting suitable multiples of the last row from the others, we get
|C1| = |C1]. Analogously, we obtain |Cy| = |Cy|. If we set I' := T'"\ {r} and
A := KT /(I N KT'), another application of Lemma 3.2.1 together with

Thus

gives us
Ci+a'ala| a'
C = ‘a 1 % ,
bla | b|Cy+bb

and hence |C| = |Cy]|C4|.

Now suppose C is invertible over Q. Then the same is true for Cy, Cy, Cy
and Cy, and we write ®, ®;, ®,, &;, &, instead of ®,, Dy,s O,y By, Of,-

If A and B are invertible matrices such that B = SA'S for some invert-
ible matrix S, we will write A ~ B. Note that in this case S(—'AA™1)S™! =
— BB~ and therefore —'AA~! and — B B~! have the same characteristic poly-
nomial.

Obviously, we have

i+ e | a ¢ |-
Clz( 1—t|—aa a)N( 1] a a)::Dl‘
a 1 0 1

Moreover, observe that

and hence
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Similarly, ®, and

(b—D)C7 (b—b) — 1| (b—b)C;!
b, (b — b) 2

have the same characteristic polynomial. Applying the same reasoning to the

full algebra A and using
¢, | 0
i = —
0 | P,

we obtain that ¢ and

(I)l (I)l(a — CNL) 0
{a—a)CTr| X=1 |Yb—-bC5t
0 d,(b—b) o,

have the same characteristic polynomial as well. Here, we set
A= Ya—a)CT a—a)+ (b—b)C7Hb—b).
(Note that the quadratic form x(x) = ‘wC} 'z has significance in its own right

because it is tightly connected to the Euler characteristic of the algebra A, see

[17, p. 70].)
If finally we abbreviate
a =—(T+1),
ap:i=(T+1)— 7’L(a — &)C’fl(a —a),
oy = (T4 1) = (b= b)C7 b — b),
we recognize the theorem as a consequence of the following lemma. O

LEMMA 3.2.3. Let R be a commutative ring and F' € M,(R) a matriz of

the following form:
I fi 0
F = g lor+a+az| g

0 f2 £y

where Fy € My, (R), Fy € M,,,(R), ni+na+1=n, a,on,a2 € R, f1, g1 € R™
and f3,%gy € R™. Then
Qs | g2

Fy| fi
Fl =
|| ‘91 aq fo | I

PROOF. Develop the determinant with respect to the (n; + 1)-th row or
column. O

|Fy| + | Fy + al F1 || Fyl.
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An obvious induction yields the following generalization of Theorem 3.2.2:

COROLLARY 3.2.4. Letl';, 1 =1,...,m, be finile quivers with VI';,NVL'; =
{r} for i # j, and let T be the union of the I';. Suppose that I C KT is
an r-separated ideal of relations such that A := KTU/I is finite-dimensional.
Set A; := KT;/(InKT;) and [ =1 \ {r} and A; = Kfi/(] N Kfi) for
1=1,...,m. Then

1Cy, | =1Cx.| foralli and |Cal=T]]|Ch,
=1
Moreover, if this last determinant is nonzero, we have
da = (H%) (ZZ_A — (m —1)(T + 1)). O
=1 =1 YA;

By way of caution, we point out that the polynomials ¢5. need not divide

DA

3.3. The Hereditary Case

If A is hereditary, i. e. if A = KT and I' is a finite quiver without ori-
ented cycles, then the matrix Cy, and consequently also the matrix ®, and the
polynomial ¢,, depend only on the quiver I' and not on the base field K. In
fact,

Cr := Cy = (# paths from f to ¢ in I')(c pyevrxvr,

and the following matrix,
My := (# arrows from f to e in I')(c, ryevrxvrs
satisfies Cf' = F — Mp, where E is the VI' x VI identity matrix. With this

in mind, one obtains a combinatorial interpretation of the entries of ®p := &,
as follows. Namely, for e, f € VI', a twisted path from e to f is defined to be
a tuple (3, p) with an arrow 3 € Al starting in f and an oriented path p in I’
starting in e such that t(p) = t(). Roughly speaking, a twisted path consists
of a ‘standard’ path to which we attach an inverted arrow at the end. With
this convention, we obtain:

ProposITION 3.3.1. The Coxeter matriz of a finite quiver I' without ori-
ented cycles is

O = (# twisted paths from e to [ — 4 paths from e to f) pevrxvr.

PRrROOF. This follows from the above description of Cr and its inverse and
the fact that the number of twisted paths from e to f is the sum of all products
(number of paths from e to g)x(number of arrows from f to g) for g € VI'. O
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A more general formula for the entries of powers of ®r in terms of gener-
alized twisted paths will be given in Section 4.2. What was called a “twisted
path” here will be called a “l-endtwisted path” in that section.

It is interesting to note that the reduction formulas for the Coxeter poly-
nomials and for the characteristic polynomials of the adjacency matrices of
quivers of the type considered in Corollary 3.2.4 are exactly the same. (Of
course, the term (7' 4 1), which is the Coxeter polynomial of a one-vertex
quiver without arrows, has to be replaced by the characteristic polynomial of
the corresponding adjacency matrix, i. e. by 7'.) The reason can again be found
in Lemma 3.2.3.

Observe moreover that there is a tight connection between ¢r := ¢, and
the characteristic polynomial of the adjacency matrix of I' in case every vertex
of I' is either a sink or a source; see e. g. [1].

We set

o TF —1
Vi 1= T _1
The linear graph A; with & > 0 vertices has Coxeter polynomial vy as one
easily derives from Theorem 3.2.2 by induction. The orientation of the arrows
does not have any impact on the formula here; indeed, this is obviously true
for Ay, and thus follows inductively for higher values of k. In view of these

remarks, a straightforward computation yields the following

for every k € 7Z.

COROLLARY 3.3.2. LetI'y and I'y be finite quivers without oriented cycles.
Then the quiver

k arrows

has Cozeter polynomial

dr,dr, — kK2 Tér\ (1P, (s)-

The quiver

has Cozeter polynomial

vk, ér, — Toeo1 (Sr\por, + 6r,0m ) + T20k2br\ () O (s}
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irrespective of the orientation of the k arrows linking I'y and T'5. ]

We conclude this chapter with an example of a class of quivers which cannot
be tackled with Theorem 3.2.2 and its corollaries:

ProposiTiON 3.3.3. If ' is the quiver

k, arrows

e .
ko arrows\*O\‘\

o ‘ o
k. Arrows
with m € N and ky, ..., ky, € N (the case ky = --- =k, = 1 corresponding to

an m-fold arrow between two vertices), then

¢r=(Hvk)< DT 4 1) = m?T — (m T—I—lévk-l—l)

PrOOF. We may assume k; = --- = k; = 1 and kijyq,...,k, > 1. For
te{l+1,...,m}, set

—1
1 —1
(I)i = . . € Mk,—l(Z)
1 -1
and
0
. 1 0
(I)i = . € Mk,—l(Z)
1 0

(Entries which are not shown are assumed to be zero.) Then ®; is the Coxeter
matrix of a linear graph with k; —1 vertices and all arrows pointing in the same
direction. Counting the paths and twisted paths of I' as in Proposition 3.3.1,



60

we get

Or

Now consider the matrix T'F — ®, add the last column to those corres-
ponding to the last columns of the ®;, and add the I-fold of the last column
to the first. Next subtract the T-fold of the first row from the last. Finally
develop the resulting determinant with respect to the last row and note that

is the Coxeter polynomial of a star all arrows of which point away from the

CHAPTER 3. METHODS TO DETERMINE COXETER POLYNOMIALS

Im—+m—I[—1 (m—1) (m—1)

[+1 1
l ~ :
s Mis s
) 1

[+1 1
l : ~
s IS
l :

[+1 : :
l : :
l : :
[ 1 1

T—m+I+1
—1

—1

TE—-®4,

TE—-®,,,

center. By Corollary 3.2.4, it is equal to

()

i=l+1

Uk,‘

i=l+1

Uki+1

=2
3

1

TE-9,

—@WJ—wa+m)

—1
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When developing the remaining determinant
1 1 Im

TE—-®4,

TE—-®,,,

TE-®,, | :
1
with respect to the first row, it is crucial to observe that the determinant of the
matrix obtained by replacing the last column of TE — ®; by {(1...1) is just
vg,—1. To simplify the resulting expression, one uses the identity
v Vg
(T41)— = —p 22t
Vg Vg

The result follows. 0
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CHAPTER 4

The Spectral Classes of Unicyclic Graphs

4.1. Introduction, Notation, and Preliminaries

In this chapter, we study the Coxeter polynomials of the different orienta-
tions of a finite graph that contains precisely one cycle. The collection of all
those orientations that yield the same Coxeter polynomial is called a spectral
class of that graph.

We will determine the number of spectral classes of such a unicyclic graph
and show that their spectral radii are different in case the graph is wild. The
proof uses the main result from the preceding chapter as well as covering tech-
niques. Moreover, the entries of powers of the Coxeter matrix of an arbitrary
finite quiver without oriented cycles are calculated.

The results presented here were obtained in joint work with Martha Takane
and will appear in [6].

We consider a graph A and we will assume throughout that A is connected
and does not have any loops (multiple edges between two vertices are allowed,
however). We denote the set of vertices of the graph A by VA and its edge
set by EA. The graph is completely determined by its adjacency matriz Ax =
(a;;) € ZVA*VA which is the symmetric matrix whose 7j-th entry is the number
of edges in A between the vertices ¢ and j.

If < is a total order on VA, we write (A, <) for the following quiver: The
set of vertices of (A, <) is the set of vertices of A, and there are a;; arrows
from ¢ to j if ¢ > j and none otherwise. Note that (A, <), defined in this way,
has no oriented cycles, and, furthermore, every quiver without oriented cycles
having A as its underlying graph arises in this fashion from some ordering <.
The Coxeter matrix ®a <) (as defined in 3.1) and hence also the Coxeter
polynomial ¢ <) depend only on the quiver (A, <) and not on the specific
choice of <. The spectral radius of @5 <) will be denoted by pa «). Recall
that p(a,<) = max{|A| | A € C is an eigenvalue of ®(a «)}.

If A’ is a subgraph of A (i. e. A’ is a graph having a subset of VA as vertex
set and a subset of EA as edge set), then < induces a total order on VA’ again
denoted by <. The subgraph A’ is said to be full if for any two vertices in A’

63
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the set of edges between them is the same in A’ as in A. We say that A’ is a
proper subgraph of A if it is a subgraph with A’ £ A.

An essential cycle of A is a full subgraph C of A having m > 3 vertices
Tgy ... , Ty—1 such that there are edges between x; and z;44 for: =0,... ,m—2
and also between wx,,_; and zo. The graph A is called unicyclic in case it
contains precisely one essential cycle.

A vertex @ € VA is called a sink of (A, <) if there is no arrow in (A, <)
that starts in x; similarly, = is called a source if there is no arrow terminating
in . We say that (A, <) has sink-source orientation if every vertex is either a
sink or a source. These quivers are also commonly called bipartite.

Now let € VA be a source of (A, <). We denote by r,(A, <) the quiver
which is obtained from (A, <) by reversing the orientation of all the arrows
containing x. In this way a becomes a sink of r,(A, <).

We say that r =, -7y, is an admissible change of orientation for (A, <)
provided that x4 is a sources of (A, <) and z; is a source of ry,_, -1y (A, <)
for all 2.

The following is a collection of well known results which we repeat here for
the convenience of the reader.

PrOPOSITION 4.1.1. Let A be a finite graph and < a total order on its
vertexr set.
(i) If M = Ma<) € ZV2*V2 is the matriz whose ij-th entry is equal to the
number of arrows from j to i in (A, <), then we have Ax = M 4+ 'M and

(I)(A,<) = (tM — E)_I(E — M)

It follows that @A <yor = CI)(_AIK) and also ¢(a,.<) = da,<yor because of Pa o) =
(E— M)V "0y (B — M).

(i) [3]: P(a<) = dr(a,<) for every admissible change of orientation r of (A, <).
(iii) [18]: If @ € VA, then there exists an admissible change of orientation r
of (A, <) such that x is the unique source of r(A, <).

(iv) Assume that A does not contain any essential cycles and let <’ be another
total order on VA. Then there exists an admissible change of orientation of
(A, <), say r, such that the quivers r(A, <) and (A, <) are equal. In partic-
ular, ¢(a,<) = d(a,<r) only depends on A and not on the orientation.

Let A be finite and let < be a total order on VA. It is well known that
A is a Dynkin diagram if and only if pa,«y = 1 and ¢a <)(1) # 0. Ais an
Euclidean graph if and only if pa,<) = 1 and ¢a,«)(1) = 0. We call both
A and (A, <) wild in all other cases. The following theorem describes this
situation.
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THEOREM 4.1.2. Let (A, <) be wild.
(i) [1, 18]: The spectral radius p(a <) is a simple root of ¢(a <y which is bigger
than 1. Moreover, |X| < pa,«) for all eigenvalues X # pa<y of ®a<). In
particular, if > 0 and pa.<)(p) <0, then p < p(a,<)-
(i) [1, 8]: Let A" be a proper subgraph of A (not necessarily full) and assume
that either (A,<) has a sink-source orientation or else A has no essential

cycle. Then par <y < pia,<)-

4.2. Iterated Coxeter Transformations

Let A be a finite graph and < a total order on VA. We are going to describe
the entries of powers of the Coxeter matrix ® = ® (4 ) in combinatorial terms,
extending Proposition 3.3.1.

DEFINITION 4.2.1. A sequence ¢ = (pe, Ve, Po—1yYe—1,- - -, V1, Po) With € >
0, oriented paths po, . .., p; and arrows ¥4, ..., v, in (A, <) is called an (-twisted

path from s(po) to t(pe) if t(pi—1) = t(v:) and s(p;) = s(y;) fori =1,..., 7.
The sequence ¢ is called (-endtwisted, if in addition 0 = length(p,) :=
#(arrows belonging to p;) holds. If ¢ is as above, define

length,(q) := length(p;—y) fori =1,...,0 41

and

¢
lg| := 0 + Z length(p;).

=0

The set of all (~twisted paths in (A, <) from e to f is denoted by T*(e, f), and
the subset of all ~endtwisted paths from e to f is called E(e, f).

PROPOSITION 4.2.2. Let n be a natural number and e, f € VA. Then

(q)n)&f:zn:(_w—f( 3 )(|Q|+nn__f_l)_ Ze,f) (|Q|:f£_€))

=1 quZ(ehf quZ—l(

PROOF. If we set M = (F#arrows from j to 1); jeva and C' = (E — M)™!,
then ® = ‘C'M — 'C', and an easy induction shows

" = ('CM — 'Oy = znj(—w—f( 3 ‘cm [ M'C™) (M — E).

=1 (n1 ..... ng) 1=2

4

=1
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Now remember that C' counts oriented paths in (A, <) and, more generally,

(CF), s = > (1ength(p) +k— 1)‘

ppath from ftoe k=1
Using the definition of T~ (e, f), it follows

(e (IIMC))ey = 2 H(lengthlﬂ—i(Q)er—l)

=2 g€Tt=1(e,f) =1 n; — 1

The result is now a consequence of the following identity, valid for all non
negative u,ry,...,rg:

{

Z ﬁ(n—l—ui—l) ((Eri)+u—1)
= =1
(ul,...,ug) 1=1 ' u
u; >0 with u:ZZ: g
=1
(Choose u elements with repetition from a disjoint union of ¢ sets, the i-th
of which having r; elements). O

4.3. Galois Coverings

Let A, A be (not necessarily finite) graphs and let < and < be total orders
on their respective vertex sets. Following [11, 12], we say that an epimorphism
of quivers 7 : (A, <) — (A, <) is a Galois covering defined by the group G,
if the following conditions are satisfied:

1) G < Aut((A, <)) is a group of quiver automorphisms which acts freely
(i. e. the identity is the unique element of (i leaving any vertex of (A, <)
fixed);

2) n7Y(rz) = Gz, for every arrow or vertex z in (A, <).

Let (AU, <) en be a sequence of full finite subquivers of the (not necessarily
finite) connected quiver (A, <). We assume that A has no essential cycles and
is bounded, i. e. that there exists K € N such that every x € VA is contained
in at most K edges. We say that (AU, <); has limit (A, <) and write

(A, <) = lim (AV), <)
J—r0o0
if for any arrow «a in (A, <), there exists N € N such that « is an arrow in

(AW <) for all 5 > N. In this case, according to [9] and [10], the sequence
(P(ab) <)) converges, and we define

P(a<) = jli}rgo P(A) <)-
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Obviously, this definition does not conflict with the previously defined p(a <)
in case A is finite. Furthermore, p(a <) does not depend on the orientation <
by 4.1.1(iv).

In the sequel, we will constantly use the fact that, if 7 : (A, <) — (A, <)
is a Galois covering and A is bounded, then A is bounded as well.

LEMMA 4.3.1. (i) Let (A, <) be a finite, connected quiver and let 7 :
(A, <) — (A, <) be a Galois covering defined by the group G such that A
does not contain essential cycles. Then:

L1) pag) < P9

1.2) If G is finite, then pa 2y = p(a<)-

i.3) If (A, <) is bipartite, A unicyclic, and G =7, then px 2y = p(a<)-
(ii) Let (A, <) be a finite quiver whose underlying graph A is unicyclic. Then
there exists a Galois covering (A, <) — (A, <) with group Z such that A
does not contain essential cycles. Moreover, \ depends only on A and not on
the orientation <.

(iii) Let A be a unicyclic graph with essential cycle C such that |VC| is even.
Then A admits a sink-source orientation <o. Furthermore, whenever < is
another orientation of A, we have pa,<y) < p(a<)-

PROOF. (i): Parts (i.1) and (i.2) are contained in [10]; we derive (i.3) from
[9] taking into account that Z is an amenable group.
(ii): Let C = {xo,... ,&m_1} be the essential cycle of (A,<). We define a

Galois covering 7 : (A, <) — (A, <) as follows: VA = VA x Z, and the set

of edges between the vertices (y,n), (z,m) is

BA( ). ifm=nand {y,2) # Lo o)
EA((y,n),(z,m)) =3 EA(x,-1,70), ifm=n—1and y=a,_1,2 = xo;
o] otherwise

Y

and < is the induced orientation of A. Then we set 7((y,n)) := y and extend
this naturally to the arrows. The group Z operates in an obvious fashion on
(A, <).

(iii): It is clear that a sink-source orientation <g exists. If < is another orienta-
tion, we use (ii) to find a graph A and Galois coverings 7 : (A, <o) — (A, <o)
and 7 : (A, <) — (A, <) defined by Z. The result follows:

= P(AZ0) = P(AZ) S P(AK)-

<o) o) (i)

O

PROPOSITION 4.3.2. Let (A, <) be a proper (not necessarily full) sub-
quiver of a wild unicyclic quiver (A, <). Assume A’ contains no essential
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cycles. Then
Par<) < PA<):
PROOF. Let C be the essential cycle of A, with m = |VC|. By 4.3.1(i.2), we

may assume without loss of generality that m is even. Thus, let <o be a sink-
source orientation of A. Let 7 : (A, <) = (A, <) and 7o : (A, <o) = (A, <o)
be Galois coverings defined by Z, as in 4.3.1(ii). We then get

P(A,Z) = P(AZ) S Pa<)-

PA <) T PA <) < P(A<) a1

4.1.1 4.1.2 4.3.1

4.4. The Main Result

In this section, A will be a finite, unicyclic graph with essential cycle C.
We assume throughout that C has m vertices xg, ... ,x,,_1; and that there are
edges between z; and z;41 for 2 = 0,... ;m — 2 and also between z,,_; and x.

If < is a total ordering on VA, we set

u > v}

u<v},

a(a,<) ::#{(u,v) € {(zi,2i41) | 0 <0 <m =23 U {21, 20) }

b(a,<) ::#{(u,v) € {(zi,2i41) | 0 <0 <m =23 U {21, 20) }

and define

V(Aa<) = |Cl(A,<) - b(A,<)|-
Since (A, <) has no oriented cycles, both a(a,«) and ba <y are positive; fur-
thermore, v(a <) clearly does not depend on the numbering of the vertices of C.
All three numbers depend only on the quiver (A, <) and not on the particular
total order chosen. Loosely speaking, a(a <) counts the number of multi arrows
in C pointing in clockwise direction, and b <) counts the others. If A is equal

to the Euclidean diagram A,_i and a := U(dyry <) b:= b(Am—l <) then we have

G o(T) = (T = 1)(T" = 1).

The following theorem is the main result of this chapter. The proof will
follow after some preparations at the end of this section.

THEOREM 4.4.1. Let A be a unicyclic graph whose essential cycle C has
m vertices. Then:
(i) There exist integer polynomials f,g € Z[T] (depending only on A), such
that for every total order < on VA:

dac) =+ 9dc <)
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Moreover, f and g are products of Coxeter polynomials of certain subgraphs of
A having no essential cycles.
(ii) The number of different spectral classes of A is equal to [5] (=biggest
integer less than or equal to ).
(iii) Let <y and <y be two total orders on VA. The following statements are
equivalent:

(a) diaci) = P(a,<2)

(b) v(a,<1) = v(a,<)

(c) there exists an admissible change of orientation r of (A, <1) such that
T(A, <1) = (A, <2) or T(A, <1) = (A, <2)0p.

Moreover, if A is wild, we have

PA<) < P(A) S VAa<) < V(A<)-

Part (ii) of this theorem was proved in [7] in case A = C is an essential
cycle. We will eventually reduce the proof to this case, but our approach to
the problem is different from Coleman’s.

LEMMA 4.4.2. (i) a(a,<jor = m — aa,<y and therefore via <) = v(a,<)or -
(ii) Let <y and <3 be orientations of A. We have va <) = va,<,) if and
only if there exists an admissible change of orientation r of (A, <y) such that
r(A,<y) = (A, <g) or r(A, <) = (A, <2). In this case, we have da <) =
¢(A,<2)-

PROOF. (i) is clear.

(ii) “<=” By (i) and induction, it is enough to take r = r,, where @ € VA is
a source of (A, <), and show that v,(a <) = v(a,«,). This is clear if z ¢ VC
because the edges in C are not affected by the application of r. If, on the other
hand, x is a vertex of C, then the orientation of those edges of C that contain
z will change, but the numbers a(a <), b(a,<,) and hence v(a <) remain the
same.

“=" In the first case, we consider the situation when a(a <) = @ «,). Pick
x € VC arbitrary. We can find admissible changes of orientation s, of (A, <4)
and (A, <3) so that x is the unique source of both s(A, <) and (A, <s),
and therefore of C, according to 4.1.1(iii). We have aya <) = aya,<,) and
it is then clear that s(A, <y) and t(A, <2) must be the same quivers, which
provides us with an admissible change of orientation r of (A, <;) such that
T(Av <1) = (Av <2)‘

In the case a(a <) = ba<,) = @(a,<,)or, using the same arguments, we can
exhibit an admissible change of orientation r of (A, <;) such that r(A, <) =
(A, <3)°P. O
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PROPOSITION 4.4.3. Fori=1,...,m—1, let (C,<;) be the orientation of

C with unique source xo and ac <;) = i. We write a;; := az.; for the number

of edges between the vertex x; and x; and set d := agraya -+ A(m-2)(m-1)(m-1)0
and ¢; := ¢ <;y. Then

Bi(T) = 65(T) = d(1% + 17~ — i —

and, in particular, the ¢; are pairwise distinct for 1 <1 <]

PrOOF. We have ¢;(1') = det(T(E—"Ma <))+ L — M <)), since det( L —
‘M(a,<;y) = 1. Observe that (T(E — ‘Miacy) + E - M(AK@.)) =T+ 1if
u = v, and —[T'(#arrows(u — v)) + (Farrows(v — u))] if u # v.

The Leibniz formula for the determinant then yields

Gi(T) = —d(T" +T7") + 3 sgn(o)(T + 1)m_2Z°TZ°Gf<1cr)j£o> ) (o)

i
cEMm, Lo Mo

)7
7

where M, is the set of all those permutations ¢ € 5, which can be written
as a product of disjoint transpositions: o = (i(lg)jfg)) e (zgj)]l(:)) Clearly, the

second half of this expression does not depend on 1. O
We have now assembled all ingredients for the proof of our main theorem:

PROOF OF THEOREM 4.4.1. (i) Since A is a unicyclic graph, it has the
following shape:

T

T

where all T} are trees and x; € VCN VT, @ = 1,...,/. The statement fol-
lows then by induction on ¢ and Theorem 3.2.2, taking into account that the
Coxeter polynomial of a graph without essential cycles does not depend on its
orientation.

(ii) follows from (iii), below.

(iii) The equivalence of (b) and (c) was proved in Lemma 4.4.2(ii), while the
implication (c¢)=>(a) follows from 4.1.1(ii). To see (a)=-(b), assume v(s «,) #
V(a,<;)- Using 4.1.1(iii), we find admissible changes of orientation r and s so
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that both r(C,<y) and s(C, <3) have unique source zy. Because of v, <) #
Vy(C,<z), Proposition 4.4.3 together with (i) shows that ¢(a <) # d(a,<)-

Now assume A is wild, and v «<,) < v(a «,). Without loss of generality,
we can assume that aa,<,) < ba <,y Since va <) < v(a,<,), there exist real
numbers o, 3 > 0 such that aa <) = a@a <) + @, ba,<;) = @¢a,<,) + 5, and
thus ba,<,) = a(a,<,) +a+ 8. Write p := p(a <,). We then get

D(e.<a)(P) — Dc.<i)(p) ias d(p*a<i) 4 pha<i) — pha<a) — pha<a))

= —dp*a=) (p" = 1)(p° = 1) <0

since p > 1 by 4.1.2. Note that g(p) > 0, where ¢ is the polynomial from (i);
this follows from 4.3.2 and 4.1.2(i). Using this, we get

P(a,)(P) = G(a,2)(P) = D(a.<)(p) = 9(p)(de.x)(p) = die.<(p)) <0,
which, again by 4.1.2(i), implies p < p(a <,) and proves the theorem. O
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