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ABSTRACT

Two Aspects of Finite�Dimensional Algebras�
Uniserial Modules and Coxeter Polynomials

by

Axel Boldt

In this dissertation� we de�ne �triangles of uniserials� and locate them in
the Auslander�Reiten quivers of �nite�dimensional triangular algebras� Irredu�
cible morphisms between uniserial modules over hereditary algebras are also
classi�ed� as well as those uniserial modules having uniserial Auslander�Reiten
translate� It is shown that� over a wild hereditary algebra� almost all uniserial
modules are regular and quasi�simple�
Moreover� we give a reduction principle for calculating Coxeter polynomials

and use it to determine the spectral classes of unicyclic graphs� Combining
this principle with covering techniques� we show that� if the cycle of a unicyclic
graph consists of m points� then the graph has �m�	� spectral classes and� in
case the graph is wild� the spectral radii of these classes are distinct�
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Introduction

This dissertation contains the study of two aspects of the representation theory
of �nite�dimensional algebras� Uniserial modules over triangular and heredit�
ary algebras and the patterns in which they arise as vertices of the Auslander�
Reiten quiver in part �� and the Coxeter polynomials of hereditary algebras
and� in particular� algebras based on unicyclic quivers in part 	�
By � we will denote a �nite�dimensional associative algebra over a �eld

K� by J its Jacobson radical� and the modules we consider will be �nitely
generated left ��modules�
In the �rst part� we focus on uniserial modules� i� e� those non�zero mod�

ules that admit precisely one composition series� These are �arguably� the
simplest indecomposables� and this makes it interesting to understand their
r�ole within the category ��mod of �nitely generated left ��modules� One ma�
jor tool used to study this latter category is its Auslander�Reiten quiver� the
directed graph having as vertices the isomorphism classes of indecomposable
modules and as arrows the irreducible maps between them� a homomorphism
f �M �� N between indecomposable modules M and N is called irreducible
if the only possible factorizations f � gh are trivial� i� e� either h is a split
monomorphism or g is a split epimorphism� These irreducible maps are im�
portant because� in many situations� they constitute the basic building blocks
for arbitrary homomorphisms�
Another motivation for studying irreducible homomorphisms lies in their

tight connection to Auslander�Reiten sequences� A non�split short exact se�
quence

� M
f

X
g

N �

with indecomposable end terms M and N is called an Auslander�Reiten se�
quence if every homomorphism h � L �� N that is not a split epimorphism
can be lifted over g� It turns out that� up to isomorphism� there is always
precisely one Auslander�Reiten sequence ending in a non�projective indecom�
posable module N � Its initial term is called the Auslander�Reiten translate of

�
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N and denoted by �N � M � The situation is symmetric in that all indecom�
posable non�injective modules arise uniquely in the form �N � Because � can be
computed rather easily� this provides a method for constructing new indecom�
posable modules from known ones� The connection with irreducible maps is
as follows� if the middle term X is decomposed into a direct sum of indecom�
posables� then the corresponding components of f represent all the irreducible
maps starting inM and the components of g represent all the irreducible maps
ending in N �
In Chapter �� we focus on split basic triangular algebras� These are the

homomorphic images of �nite�dimensional path algebras K�� where � is a ��
nite quiver without oriented cycles �see e� g� ���� sec� 	��� for the de�nitions�
but note that� in contrast to the convention adopted there� we compose paths
like maps� if p is a path from x to y and q is a path from y to z� then we
denote the composite path from x to z by qp�� Our primary goal is to under�
stand irreducible maps f � U� �� U� between uniserial modules U�� U�� The
following basic fact can easily be proved for arbitrary algebras� namely� the
only irreducible maps between uniserial modules are certain radical embed�
dings JU �� U and socle factor projections U �� U� soc U � since these are
clearly dual to each other� our question therefore becomes� For which uniserial
modules U over a triangular algebra � is the radical embedding JU �� U irre�
ducible� We provide a su cient as well as a necessary combinatorial condition
in terms of quivers and relations for this phenomenon� The two conditions are
separated by a rather slim margin� but an elimination of this gap has unfor�
tunately not yet been accomplished� However� the existing results su ce to
completely characterize the irreducible maps between uniserials over heredit�
ary algebras� and to locate and identify certain interesting patterns of uniserials
in the Auslander�Reiten quiver of general triangular algebras� We call these
�triangles of uniserials��
A triangle of uniserials is de�ned to be a full subquiver of the Auslander�

Reiten quiver of the following shape�

Un��

Un���� Un����

���

U��� U��� � � � U��n�� U��n
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where n � N and the Uij are pairwise non�isomorphic uniserial left ��modules
with

length�Uij� � i for all i and j�

The notation U V indicates that �V � U � It turns out that these tri�

angles occur quite frequently� For example if �A n is the linearly oriented graph
A n �

� � � � � � �

then all irreducible K�A n �modules are uniserial� and the full Auslander�Reiten
quiver of K�A n is a triangle of uniserials� So� whenever a triangle of uniseri�
als occurs in the Auslander�Reiten quiver of �� one can interpret this as oc�
currence of a subcategory T equivalent to a category of the form K�A n � mod
inside ��mod� in particular� each such subcategory T has Auslander�Reiten
sequences�
The main theorem of Chapter � completely characterizes those uniserial

modules over triangular algebras that appear as the upper tips of maximal
triangles of uniserials� The proof relies on the information about irreducible
maps between uniserial modules that was obtained earlier�
In Chapter 	� then� we specialize to the hereditary case� i� e�� we study mod�

ules over �nite�dimensional path algebras K�� In fact� it was the hereditary
case that provided the original motivation for the work on triangular algebras
in the �rst place� As we already mentioned earlier� in this situation it is pos�
sible to characterize the irreduciblemaps between uniserial modules completely�
Moreover� the resulting description of triangles is much more transparent than
in the triangular case� In particular� we manage to give a description of the tips
of triangles that does not involve any combinatorics but is completely module�
theoretic� As a consequence� virtually all irreducible maps between uniserials
�more precisely� all but the radical embeddings of projectives and the socle
factor projections of injectives� are embeddable in triangles of uniserials� This
means that� except for the projectives and the injectives� the uniserial modules
appear in the Auslander�Reiten quiver either isolated or in triangles� Com�
bined with the standard information about the structure of Auslander�Reiten
quivers of hereditary algebras� this yields still stronger insight about the pos�
sible location of uniserial modules inside that quiver� we show that� in the
wild case� almost all uniserial modules are regular and quasi�simple� An in�
decomposable module X is called regular if its connected component in the
Auslander�Reiten quiver does not contain any projective or injective modules�
it is called quasi�simple if there does not exist any injective irreducible map
ending in X�
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One of the reasons for this clean picture lies in the fact that the hereditary
situation allows for an easy description of the uniserials� Modules over the al�
gebra K� are simplyK�linear representations of the quiver �� i� e� assignments
of �nite�dimensional K�vectorspaces to the vertices and K�linear maps to the
arrows of �� As a consequence� one obtains all uniserial modules by choosing
a path in � �sometimes called a �mast� in this situation�� by assigning the
vectorspace K to every vertex on the mast and � to all others� and by substi�
tuting the identity map for each of the arrows on the mast� Using this explicit
description� we classify �in terms of their masts� those uniserials modules U
over K� which have uniserial Auslander�Reiten translate �U � in the positive
case� this uniserial module �U is pinned down in terms of its representation�
In general� if we have a short exact sequence

� U X V �

with uniserial end terms U and V � then the middle term X is either indecom�
posable or a direct sum of two uniserials� Combining the information about
irreducible maps and Auslander�Reiten translates� one can easily describe those
Auslander�Reiten sequences over hereditary algebras which are made up from
four uniserial modules� Another application is as follows� it happens compar�
atively often that every uniserial U has the property that either the sequence
� iU for i � � consists only of uniserials and ends eventually in a projective
module� or the sequence ��iU for i � � consists only of uniserials and ends in
an injective module� In other words� all uniserials are connected to projectives
or injectives via a chain of � �translations that only involve uniserials� We clas�
sify those hereditary algebras of �nite representation type for this is always
true�

In the second part� we examine the Coxeter polynomial of a hereditary
algebra � � K�� The Coxeter polynomial is the characteristic polynomial of
the Coxeter transformation� which in turn is the unique endomorphism ! of
the Grothendieck group K���� satisfying

!�Pi� � ��Ii� for all vertices i of ��

Here� �X� denotes the image of the module X � ��mod in K���� �which
can be identi�ed with the dimension vector of the associated representation of
�� and Pi resp� Ii are the indecomposable projective resp� injective modules
corresponding to the vertex i�
The signi�cance of the Coxeter transformation stems from the fact that

it describes the Auslander�Reiten translation on the level of the Grothendieck
group�

!�X� � ��X� for every non�projective indecomposable X�
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The Coxeter polynomial " especially its zero set " thus encodes important
information about the asymptotic growth behavior of the Auslander�Reiten
translation� But it also contains homological information� its coe cients are
closely related to the dimensions of the Hochschild cohomology groups of ��
see �����
The coe cients of the characteristic polynomial of a matrix� in general� can

easily be calculated from the traces of powers of that matrix ���� p����� This
induced us to search for an explicit formula for the entries of powers of the
Coxeter matrix in terms of the combinatorics of the quiver �� The result can
be found in Chapter ��
In addition� we present a reduction formula that signi�cantly simpli�es

the calculation of Coxeter polynomials in concrete situations� in the situation
where the quiver � is the union of two subquivers �� and �� that have precisely
one vertex in common� we can express the Coxeter polynomial of � in terms
of the Coxeter polynomials of these smaller quivers� This trick quite naturally
leads to explicit formulas for the Coxeter polynomials of certain classes of
quivers� these were already given in �	�� but we include them here in order to
illustrate the method� In fact� we were able to prove a more general version of
this reduction principle which even allows for the presence of certain types of
relations on the quiver �� This work has been published in �
��
In the sequel� we approach the following problem� given an undirected

graph #� how many orientations of # yield di$erent Coxeter polynomials� In
this context� the collection of all the orientations that result in the same Coxeter
polynomial is called a spectral class of #� It is well known that trees have only
a single spectral class� We solve the �rst non�trivial case� namely� we deal with
those graphs # which contain exactly one cycle� these graphs we call unicyclic�
The statement of the main theorem is as follows� If the cycle of a unicyclic

graph # consists of m points� then # has �m�	� spectral classes� Moreover� if
the graph # is wild �which� in this situation� means that it does not only consist
of a cycle by itself�� then the di$erent spectral classes have di$erent spectral
radii �de�ned as the spectral radii of the corresponding Coxeter polynomials��
We completely describe the spectral classes and order them according to their
spectral radii� The proof of this theorem uses the reduction formula established
earlier as well as covering techniques�
This last part of the thesis� addressing spectral classes of unicyclic graphs�

is the result of joint work with Martha Takane� see ����
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CHAPTER �

Uniserial Modules over Triangular Algebras

���� Introduction and General Results

In this chapter� we will study uniserial modules over triangular algebras�
with emphasis on the irreducible maps between them and �triangles of uniseri�
als� �certain full translation subquivers of the Auslander�Reiten quiver iso�
morphic to the Auslander�Reiten quivers of linearly oriented graphs A n ��
Section 	 �rst gives a necessary combinatorial condition for the radical

embedding of a uniserial module over a triangular algebra to be irreducible�
followed by a su cient condition� Unfortunately� a complete combinatorial
characterization of this phenomenon has not yet been accomplished� however�
the present results su ce to completely understand triangles of uniserials� The
theorems concerning triangles are presented in Section 
� In addition� Section 

gives an example of a phenomenon that cannot appear in the hereditary case�
�incomplete triangles�� These examples can easily be constructed by means
of the results of Section 	�
In the beginning of this introductory section� we will present some rather

elementary general results about uniserial modules and then set up the notation
to be used in the analysis of the triangular case� We will also emphasize the
di$erences between the general triangular and the hereditary theories�

Definition ������ Let R be a ring� A non�zero R�module U is called uni�
serial if the lattice of its submodules forms a chain� i� e� if every two submodules
of U are comparable�

Obviously� all subfactors of a uniserial module are again uniserial�
In the sequel� we will exclusively deal with uniserial left modules U of �nite

length� The lattice of proper non�zero submodules of U is then a �nite chain
with maximal element radU and minimal element socU � If� moreover� the ring
R is left artinian with Jacobson radical J � then the submodules of U are given
by J lU � l � �� � � � � length�U��

Remark� Let R be left artinian with Jacobson radical J and let X �
R� mod� If X�JX is simple� then every x � X n JX generates X�

��
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Proof� We have X � Rx % JX by hypothesis� Since JX is small in X�
we obtain X � Rx�

Proposition ������ Let R be a left artinian ring and consider a short
exact sequence

� U�
f

M
g

U� �

in R�mod with uniserial modules U� and U�� Then M is either indecomposable
or a direct sum of two uniserial modules�

Proof� We will again denote the Jacobson radical of R by J � Assume
we have a decomposition M � M� � M� with both M� and M� non�zero�

Decompose f and g accordingly� i� e�� write f �
�
f�
f�

�
and g � �g�� g��� and let

&� R� mod �� �R�J�� mod

be the functor R�J �
R
�� We then get the right exact sequence

&U�

�
�f�
�f�
�
&M� � &M�

� �g�� �g�� &U� �

where &U� and &U� are simple and &M�� &M� non�zero semisimple� Comparing the
lengths of the involved modules� we see that both &M� and &M� must be simple
and &f 	� �� Without loss of generality� we may assume &f�� &U�� � &M��
Pick u� � U� n JU�� Then f��u�� � M� n JM� generates M�� Hence f� is

surjective and M� is uniserial� If f��u�� � �� then f� � � and g� is injective�
and consequently M� is uniserial� If f��u�� 	� �� we can �nd l � � with
f��u�� � J lM�nJ l��M�� If l � �� then f��u�� generatesM� andM� is therefore
uniserial� We will assume l � � from now on�
Claim �� im�g�� 
 J lU��
Let m� � M�� write m� � �f��u�� � f���u�� with � � �� Then g��m�� �
g�m�� � gf���u��� gf��u�� � �gf���u�� 
 g�J lM�� 
 J lU�� Hence we have
g��M�� 
 J lU��
Claim �� g� is surjective and the map M��J

lM� �� U��J
lU� induced by g�

is an isomorphism�
Let m� �M� nJM�� Then u� �� g��m�� � U� nJU� �since g��m�� � JU� would
imply im�g� � im�g�� % im�g�� 
 J lU� % JU� � U�� a contradiction�� Since u�
generates U�� g� is surjective� Now let x �M�nJ

lM� and assume g��x� � J lU��
say g��x� � �u� � g���m�� with � � J l� Then x� �m� � kern�g�� n J lM� 

im�f�� n J lM� � �� again a contradiction�
Claim �� J lM� is uniserial�
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By restricting our maps f and g� we obtain the following short exact sequence�

� U� M� � J lM� J lU� �

and we see as above that J lM��J
l��M� is simple� hence J lM� is generated by

f��u�� and f� � U� �� J lM� is therefore surjective�
Claim 	� M� is uniserial�
We know that JkM��J

k��M� is simple or � for all k � N�

Proposition ������ Let R be a left artinian ring with Jacobson radical J �
If U�� U� � R�mod are uniserial and f � U� �� U� is an irreducible R�linear
map� then either
��� there exists an isomorphism 	 � JU� �� U� so that f	 is the natural
radical embedding JU� �� U�� or
�	� there exists an isomorphism 
 � U� �� U�� socU� so that 
f is the natural
socle factor projection U� �� U�� soc U��

Proof� We only consider the case where f is injective� the case of a
surjection is analogous� We know that im�f� is a proper submodule of U��
hence im�f� � J lU� with l � � and U� � J lU� via f � However� if l � ��
then J lU� �� J l��U� �� U� would clearly be a non�trivial factorization of
J lU� �� U� and would yield such a factorization of f � which is impossible�

We will now leave the general situation and concentrate on the case of a
triangular algebra� Let K be a �eld and let � � K��I be a �nite dimensional�
triangular K�algebra �i� e� � is a �nite quiver without oriented cycles and I is
an admissible ideal of relations in the path algebra K��� The Jacobson radical
of � will be denoted by J �
We will write A� for the set of arrows of � and V� for the set of ver�

tices of �� Arrows in � will be identi�ed with their images in �� moreover�
we will write ex for the primitive idempotent in � corresponding to the ver�
tex x � V�� The starting vertex of an arrow � � A� will be denoted by
s��� and its terminal vertex by t���� The same notation will be used for
starting and terminating vertices of paths� We will furthermore identify left
��modules with the corresponding representations of �� Note however that
not all representations of � arise in this fashion� due to the relations in I�
Whenever V � ��Vx�x�V�� �g����A�� is a representation of � and � � exK�ey
with x� y � V�� we will write g� for the induced linear map Vy �� Vx� Finally�
K�linear maps having domain K will be identi�ed with their values at ��
A major tool for the combinatorial treatment of uniserials is given in the

following de�nition�
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Definition ������ A path p in � is called a mast of the uniserial module
U � ��mod if length�p� � length�U� � � and pU 	� ��

Remark� Every uniserial U � ��mod has a mast�

Proof� If n �� length�U�� then � 	� socU � Jn��U and Jn�� is generated
by the images of the paths of length n� ��

To prepare for our analysis in the following sections� we �x a �nitely gen�
erated uniserial left ��module U with mast

p � �
���� 	

���� � � �
�n��
�� n�

On several occasions� we will refer to certain subpaths �i � � ��j of p� whenever
i � j� this expression will simply stand for �� We now name all the arrows in
� that touch p� classifying them according to the type of contact with p�

B ��
n

 � A� j s�
� � f�� � � � � n� �g and t�
� 	� f�� � � � � ng

o
�

B� ��
n

� � A� j s�
�� � n

o
�

C ��
n
� � A� j s��� 	� f�� � � � � ng and t��� � f	� � � � � ng

o
�

C � ��
n
�� � A� j t���� � �

o
�

D ��
n
� � A� j fs���� t���g 
 f�� � � � � ng and � 	� f��� � � � � �n��g

o
�

For an illustration of these de�nitions with an example� consider the fol�
lowing quiver �� together with the path p � �	�����

��

��

��
�

��
�

����

�
���

���
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We then have
B � f
g�
B� � f
��� 


�
�g�

C � f�g�
C � � f��g�
D � f��� ��g�

Observe that� in general� our uniserial module U may be identi�ed with a
representation U � ��Ux�� �f��� of �� where

Ux �

��
�K� if x � f�� � � � � ng�

�� else

and

f�i � id for every i � f�� � � � � n� �g�

The module U is then completely determined by the choice of the mast p and
the scalars f���� for � � D� di$erent sets of scalars corresponding to non�
isomorphic modules�
Unlike the hereditary case� not every path is a mast� however� and not

every set of scalars appears in this fashion� since the relations in I impose
restrictions� For instance if� in the example above� the relations

���� % �	���� % �	�� � � � �
 � 
���	���

are imposed� then the path �
 is not the mast of any uniserial module� Moreover�
it is easy to see that the allowable sets of scalars �once a mast is �xed� are the
points of a certain a ne variety over K� in our example� the variety for the
mast p � �	���� is f�x� y� � K� j xy % � % y � �g�

���� Irreducible Radical Embeddings of Uniserials

We know from ����
 that� in order to understand irreducible maps between
uniserial modules� it is su cient to study radical embeddings �and their duals�
socle factor projections�� The following conjecture covers this situation� we
manage to prove ��	� � ���� and ���� � �	��a�� in the sequel� These two
implications� together with their duals� will su ce to completely characterize
triangles of uniserials in the next section�

Conjecture ������ The following statements are equivalent�
��� The embedding JU �� U is irreducible�
�	� U is not simple and satis�es both �a� and �b� below�
�a� For every 
 � B�


�s����� � � ��� � Jp�
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and for every � � D�

��s����� � � ��� � K�t����� � � ����

�b� There exists a subset R 
 J such that frp % J�p j r � Rg forms a
K�basis for Jp�J�p and �i� and �ii� both hold�

�i� For every � � C there exists w � pJ such that� for every r � R�

r�n�� � � ��t���� � rw�

�ii� For every � � D and every r � R�

r�n�� � � ��t���� � Kr�n�� � � ��s����

Proof of ��	�� ����� Let V � ��Vx�� �g��� � ��mod and suppose there
exist ��linear maps

JU

��
x�

V
����x�

U

such that '! is equal to the embedding JU �� U �
Observe that we can assume without loss of generality that the elements of
the set R arising from condition �	� are normed in the following fashion� r �
eu�r�ren for certain vertices u�r� � V�� We can thus denote by gr the K�linear
map Vn �� Vu�r� induced by left multiplication with r�
Note furthermore that we can strengthen the conditions on � � D in the

following manner�

��s����� � � ��� � f�����t����� � � ���

and for every r � R

r�n�� � � ��t���� � f����r�n�� � � ��s����

The �rst equation is clear� and the second one follows then from

r�n�� � � ��t�����s����� � � ��� � f����r�n�� � � ���

since rp 	� � for r � R�
Case �� There exists v � V� with '��v� � � and �grg�n�� � � � g����v� � � for
all r � R�
Our goal is to construct a section � for ' in this case� First observe that
�g��g�n�� � � � g����v� � � for all 


� � B� as well� because Jpv 

P

r Krpv %
J�pv � J�pv implies Jpv � ��
De�ne � � ��x� � U �� V by

�i��� �� �g�i���������v� for i � f�� � � � � ng and
�x �� � for x 	� f�� � � � � ng�
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Once we have checked that � � Hom
�U� V �� the equality '������ � � will
clearly imply '� � id� completing the treatment of the �rst case�
So let us check that � is ��linear� That g�i�i � �i�� � �i��f�i for i �
f�� � � � � n� �g is clear� moreover� we compute

g��s������ � �g�g�s����� � � � g����v�

� f�����g�t����� � � � g����v�

� �t���f�����

Now let 
 � B 
 B �� Then �
�s����� � � �����v� � Jpv � �� and again
g��s��� � � � �t���f��
Case �� For every v � V� with '��v� � �� there exists r � R with
�grg�n�� � � � g����v� 	� ��
In this case� we will construct a retraction � for !� First we note that there
exist linear maps �r � Vu�r� �� K for r � R such that

'� �
X
r�R

�rgrg�n�� � � � g�� �

De�ne � � ��x� � V �� JU by

�i �� 'i �
P

r�R �rgrg�n�� ����i for i � f�� � � � � ng and
�x �� � for x 	� f�� � � � � ng�

Again we need to check that � is ��linear� For that purpose� we compute
�� � ��

f�i�i � 'i��g�i � �
X
r�R

�rgrg�n������i���g�i

� �i��g�i

for i � f�� � � � � n� �g� and

f��s��� � 't���g� � f����
X
r�R

�rgrg�n������s���

� 't���g� �
X
r�R

�rgrg�n������t���g�

� �t���g�

for � � D� In addition� we obtain ��g�� � � � f���s���� for �
� � C �� If

� � C� then we can clearly assume that the corresponding element w � pJ
from condition �	��b��i� has the form w � pw� with w� � e�Jes���� and it
follows

ht���g� � f�'s��� �
X
r�R

�rgrg�n�� ����t���g�
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� � �
X
r�R

�rg�n������t���gw�

� �'�gw�

� �fw�'s���

� � � f��s����

Hence � belongs indeed to Hom
�V� JU�� That �! � idJU is a consequence of
the following computation�

��!���� � '�!�����
X
r�R

�rgrg�n�������!����

� � �
X
r�R

�r!u�r�frf�n����������

� ��

Thus ! is a split monomorphism in the second case� which shows that the
inclusion JU �� U cannot be factored nontrivially�

Proof of ����� �	��a��� De�ne a relation � on V� by setting

x � y ��� there exists a non�trivial directed path from x to y in �

This is in fact a partial order since � does not contain oriented cycles�
Now assume that the embedding JU �� U is irreducible and let x� � V� so
that


�s����� � � ��� � Jp for all 
 � B with t�
� � x�

and

��s����� � � ��� � K�t����� � � ��� for all � � D with t��� � x��

We will show that then also


�s����� � � ��� � Jp for all 
 � B with t�
� � x�

and

��s����� � � ��� � K�t����� � � ��� for all � � D with t��� � x��

which will prove our claim�
Case �� x� 	� f�� � � � � ng�

Set �B �� f
 � B j t�
� � x�g� If� contrary to our claim� there exists �
 � �B

with �
�s� ����� � � ��� 	� Jp� then we can �nd a K�linear map 	 � ex��e� �� K
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with Jp 
 kern�	� and 	� �
�s� ����� � � ���� 	� �� This will allow us to de�ne the

following representation V � ��Vx�� �g��� of ��

Vx �

����
���
K� if x � f�� n� x�g�

K �K� if x � f	� � � � � n� �g�

�� else

g� �

���������������
��������������

f�� if s��� � � and t��� � n��
�
f�

�
� if s��� � � and t��� � f	� � � � � n� �g�

f� � f�� if fs���� t���g 
 f	� � � � � n� �g�

�f�� f��� if s��� � f	� � � � � n� �g and t��� � n�

	���� if � � �B and s��� � ��

��� 	���s����� � � ������ if � � �B and s��� � ��

�� else�

We will see that V does indeed de�ne a left ��module and that the embedding
JU �� U can be non�trivially factored through V � This violates condition ����
First of all� we check that V satis�es the relations in I� let x� y � V� and

� �
P

q�Q �qq � exIey be a relation with �q � K and a set Q of paths having
lengths � 	� starting in y� and terminating in x� Obviously� g� � � if y 	�
f�� � � � � n� �g or x 	� f�� � � � � n� x�g� If y � f�� � � � � n� �g and x � f�� � � � � ng�

then f� � �� and since g� is one of f��
�
�
f�

�
� f��f�� or �f�� f��� we have g� � �

as well�
Now assume x � x� and y � f	� � � � � n � �g� Since f� � � for all 
 � B�

we have gq��� �� � � for all q � Q and hence g���� �� � �� On the other hand�

if �Q is the set of all those q � Q which are contingent to certain vertices in
fy� y%�� � � � � n� �� x�g but not to any others� we know that every q � �Q ends

in a certain arrow 
�q� � �B� and the second part of the induction hypothesis
yields

q�y�� � � ��� � kq
�q��s���q���� � � ���

for some scalar kq � K� Using the �rst part of the induction hypothesis� we
infer that X

q�Qn �Q

�qq�y�� � � ��� � Jp

and hence X
q� �Q

�q	�q�y�� � � ���� � ��
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It follows that

g���� f�y����������� �
X
q� �Q

�qg��q���� kqf�s���q�������������

�
X
q� �Q

�qkq	�
�q��s���q���� � � ����

� ��

We thus get g� � � here� Since the case x � x�� y � � can be dealt with
analogously� we conclude that V is indeed a ��module�
We now de�ne homomorphisms

JU

��
x�

V
����x�

U

by setting

!x �

����
���
�� if x � n��
�
�

�
� if x � f	� � � � � n � �g�

�� else

and

'x �

����
���
�� if x � f�� ng�

��� ��� if x � f	� � � � � n� �g�

�� else�

Obviously� '! equals the embedding JU �� U � Every splitting � �
��x� � V �� JU of ! would have to satisfy �� � � and hence �n � �� which is
impossible� Every splitting � � ��x� � U �� V of ' would satisfy ����� � �
and hence g���s� ������ 	� �� contradicting the fact that �x� � �� We conclude
that JU �� U is reducible� a contradiction� Finally note that the second part
of �	��a� is void if x� 	� f�� � � � � ng�
Case �� x� � f�� � � � � ng�
Since x� � � is trivial� we assume x� � 	� Note that the �rst statement of
condition �	��a� is void in this case� Again we will construct a factorization
'! of the inclusion JU �� U such that ! does not split� Irreducibility of
the inclusion will then force ' to split� and this� in turn� will imply that each
arrow � � D with t��� � x� satis�es the second condition under �	��a��
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De�ne the following representation V � ��Vx�� �g��� of ��

Vx �

�������
������

K� if x � � or x � fx� % �� � � � � ng�

K �K� if x � f	� � � � � x� � �g�

ex��e�� if x � x��

�� else�

g� �

��������������������
�������������������

f�� if s��� � f�g 
 fx� % �� � � � � ng
and t��� � fx� % �� � � � � ng��

�
f�

�
� if s��� � � and t��� � f	� � � � � x� � �g�

�� if s��� � � and t��� � x��
f� � f�� if fs���� t���g 
 f	� � � � � x� � �g�
�f�����x��� � � ���� ��s����� � � �����

if s��� � f	� � � � � x� � �g and t��� � x��
F�� if s��� � x� and t��� � fx� % �� � � � � ng�
�f�� f��� if s��� � f	� � � � � x� � �g and t��� � fx� % �� � � � � ng�
�� else�

Here� F� � ex��e� �� K is de�ned by F��w� � f�w���� Again� we have
to check that V actually yields a ��module� let � �

P
q�Q �qq � exIey be a

relation with �q � K� where Q is a set of paths of length � 	 starting in y � V�
and terminating in x � V��
It is clear that g� � � whenever fx� yg 	
 f�� � � � � ng� Moreover� if �� 
 � A�

with t��� � s�
� � x� and fs���� t�
�g 
 f�� � � � � ng� then we have f����� �
F����s����� � � ���� � F��f�����x��� � � ����� which shows that g�� is either f��
or �f��� f���� Hence g� � � if x� 	� fx� yg�
If y � x�� we get g��w� � f�w��� � � for all w � ex�e��
The remaining case is x � x�� We will explicitly deal only with the situ�

ation y � 	 since the case y � � is analogous� First we compute g���� �� �
f�����x��� � � ��� � �� Moreover� we can write

q�y�� � � ��� � kq��q��s���q���� � � ���

with certain kq � K and ��q� � D for every q � Q �note that all those paths
q � Q that involve vertices other than f�� � � � � ng are contained in the ideal
I by induction hypothesis� since � does not contain oriented cycles�� It then
follows that

g���� f�y����������� �
X
q�Q

�qg��q���� kqf�s���q�������������

�
X
q�Q

�qkq��q��s���q���� � � ���



�� CHAPTER �
 UNISERIAL MODULES OVER TRIANGULAR ALGEBRAS

� ��

Hence V is indeed a ��module� To de�ne homomorphisms

JU

��
x�

V
����x�

U �

we set

!x �

�������
������

�
�
�

�
� if x � f	� � � � � x� � �g�

�x��� � � ���� if x � x��

�� if x � fx� % �� � � � � ng�

�� else

and

'x �

�������
������

�� if x � � or x � fx� % �� � � � � ng�

��� ��� if x � f	� � � � � x� � �g�

F� if x � x��

�� else�

Here F � ex��e� �� K is given by F �w� � fw���� It is easy to see that
these are indeed ��homomorphisms which yield a factorization of the radical
embedding of U � As seen before� ! never splits� Hence ' must split� let
� � ��x� � U �� V be a splitting� For every � � D with t��� � x� we use the
equality ����� � � � �s������ to obtain

��s����� � � ��� � g����

� g��s������

� �x�f��s�������������

� f��s��������������t���f�t�������������

� f��s��������������t����� � � ����

which is what we claimed�

Examples� In order to provide a better understanding of the di$erent
cases that would have to be dealt with in a proof of ����� �	��b��� we include
here a series of examples where condition �	��b� of the Conjecture is violated�
A non�trivial factorization of the radical embedding is given in each of these
cases�
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�a� Suppose � is given by




��

�

��

�

��

	

�� ��

�

and the relations are


��� � 
��� and 
��� � � � 
����

Here U is the unique uniserial with mast ��� The embedding JU �� U can
then be factored non�trivially through a module with graph

� 
 �

	 	

��

	

���

�b� Now � is given by




��

�

��

�

��

	

��

��

�

�

�

with relations

�
��� � 
��� and 
��� � � � 
����
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Again� U is the unique uniserial with mast ��� In this case� the radical embed�
ding can be factored through the indecomposable with graph

� � 


	 	 	

�

�

�c� Consider the quiver �

�

��

�

��

	

��

��


��

�

with relations


��� � 
����� and 
��� � ��

The radical embedding of the uniserial with mast ���� can be factored through
the following indecomposable module�

� �

	 	 	


 


�
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�d� In our �nal example� let � be given by

�

��

	

�� ��




��

�

and consider the relation
���� � �����

We can factor the radical embedding of the uniserial with mast ���� through
the module

�

	 	 	

��


 


�

Remark� In order to tackle the remaining implication ���� � �	��b�� of
the conjecture� it may be convenient to have the following reformulation of
condition �	��b� at hand�
�	��b(� There exists a family �w�� � �pJ�C � such that for every x � V� and � �
exJp�exJ

�p� we can �nd r � exJen with � � rp% exJ�p and r�n�� � � ��t���� �
rw� for all � � C and r�n�� � � ��t���� � Kr�n�� � � ��s��� for all � � D�
Assume that condition ��� holds� i� e�� that the canonical embedding JU ��

U is irreducible� and that �	��b(� is violated� We then get� for every family
�w��� a special vertex x and an element � � exJp�exJ

�p from the negation
of this statement� Since �	��a� holds� this allows us to �lengthen� U to a

uniserial module �U in such a fashion that U is an epimorphic image of �U
and soc �U � �ex�Jex �note however that there is a choice involved� �U is not
uniquely determined by U and ��� Here are two potential approaches to the
construction of a moduleM through which the radical embedding of U factors
non�trivially�



�� CHAPTER �
 UNISERIAL MODULES OVER TRIANGULAR ALGEBRAS

�a� Let M be the module obtained from gluing the socles of �U and D�e�x���
�where D � HomK���K� denotes the usual duality�� The problem then is to
�nd a �good� map from JU to M �
�b� This time� we begin by gluing the socles of �U and J �U together to obtain
)M � this allows for a natural embedding of JU � Of course� this particular
embedding splits� and we have to extend )M to a module M having )M as an
epimorphic image in order to prevent this from happening�

���� Triangles of Uniserials

In this section� we de�ne triangles of uniserials and their tips� and then
classify all those triangles over triangular algebras in combinatorial terms on
the basis of quiver and relations�
The prototype of a triangle of uniserials is given by the Auslander�Reiten�

quiver of the path algebra of a linearly oriented diagram A n � i� e� of the algebra
K� where � is given by

� 	 � � � n�

In general�

Definition ������ A triangle of uniserial ��modules is a full translation
subquiver of the Auslander�Reiten�quiver of � having the following form�

Un��

Un���� Un����

Un���� Un���� Un���	

���

U��� U��� � � � U��n�� U��n
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where n � N and the Uij are pairwise non�isomorphic uniserial left ��modules
with

length�Uij� � i for all i and j�

The module Un�� is called the tip of this triangle� the triangle is called
maximal if it is not properly contained in a bigger triangle of uniserials�

Note that the length restrictions imply that the mapsUi�j �� Ui���j are �iso�
morphic to� radical embeddings and the maps Ui�j �� Ui���j�� are �isomorphic
to� socle factor projections� compare ����
� Moreover� if � is triangular� then
the requirement that the Uij be pairwise non�isomorphic is actually a con�
sequence of the rest of the de�nition� the Uij clearly have di$erent sequences
of composition factors� Furthermore� every triangle of uniserials contains at
least one simple module� which implies that there can only be �nitely many
di$erent triangles� The simple modules are precisely the triangles consisting
of a single module�

Continuing to employ the notation introduced at the beginning of the pre�
vious section� we will use that section(s results in the following form�

Proposition ������ �I� If the natural embedding JU �� U is irreducible�
then


�s����� � � ��� � Jp for every 
 � B

and
��s����� � � ��� � K�t����� � � ��� for every � � D�

�II� If B � C � D � � and U is not simple� then JU �� U is irreducible�
�III� If the natural epimorphism U �� U� soc U is irreducible� then

�n�� � � ��t���� � pJ for every � � C

and
�n�� � � ��t���� � K�n�� � � ��s��� for every � � D�

�IV� If B � C � D � � and U is not simple� then U �� U� soc U is
irreducible�

Proof� Part �I� was proved as ���� � �	��a�� of Conjecture ��	�� in the
last section while part �II� is a trivial consequence of the same conjecture(s
��	� � ����� which is also known to be true� The parts �III� and �IV�
follow by duality� if D � ��mod �� �op� mod denotes the usual duality
D � HomK���K�� then the dual of the natural epimorphism U �� U� soc U
is just the natural embedding radDU �� DU � one of these maps is irreducible
if and only if the other is� The results follow now from �I� and �II� using the
fact that the quiver of �op is �op� that the inverse path to p can be chosen as
mast for DU � and that the Jacobson radicals of � and �op coincide�
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The following lemma provides the missing link between triangles of uniseri�
als and radical embeddings resp� socle factor projections�

Lemma ������ If B � C � D � �� then the uniserial module U appears
in a triangle of uniserials�

Proof� First note that the condition on U is obviously inherited by all
subfactors of U � we thus have only to show that the short exact sequence

U

�� JU U� soc U �

JU� soc�JU� � J�U� soc U�

is almost split� since we know from Proposition ��
�	 that all appearing maps
are irreducible or �� To this end� it clearly su ces to prove that � �U� soc U� �
JU � Using B � C � D � �� we see that a projective resolution of U� soc U is
given by

�en
��p

�e� U� soc U �

and that

� JU D�en��
D�p���

D�e���

is an injective resolution of JU � However� the map D�p � �� is just N �� �
p� �with the Nakayama functor N � DHom
������� the kernel of which is
� �U� soc U��

We are now in a position to prove the announced characterization of tri�
angles of uniserials and their tips� We say that an arrow � � A� leaves the path

p � �
���� 	

���� � � �
�n��
�� n if s��� � f�� � � � � ng and � 	� f��� � � � � �n��g� The

arrow � enters p if t��� � f�� � � � � ng and � 	� f��� � � � � �n��g� Moreover� we
say that the path p is maximal with property P if p satis�es P � and whenever
q is a path such that p is a proper subpath of q� then q does not satisfy P �

Theorem ������ The uniserial module U with mast p appears in a tri�
angle of uniserials if and only if every arrow leaving p leaves at the terminal
vertex of p and every arrow entering p enters at the starting vertex of p� The
module U is the tip of a maximal triangle of uniserials if and only if the mast
p of U is maximal with the property that p is not contained in the ideal of
relations I and every leaving arrow leaves at the terminal vertex and every
entering arrow enters at the starting vertex� Every triangle of uniserials is
contained in �at least one� maximal triangle�
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Proof� Returning to the notation introduced in the last section� the prop�
erty that every arrow leaving p leaves at the terminal vertex of p and every
arrow entering p enters at the starting vertex of p is clearly equivalent to the
statement B � C � D � ��
First assume that U appears in a triangle of uniserials� Then so do all

its subfactors� Hence it su ces to prove that there cannot exist any 
 � B
with s�
� � �� any � � C with t��� � n� nor any � � D with s��� � � and
t��� � n� We have already noted that� in case U is not simple� both the radical
embedding and the socle factor projection of U are irreducible� Taking this
into account� Proposition ��
�	 does the job since none of the relations in I
de�ning � can contain a single arrow�
Clearly� if U appears inside a triangle of uniserials but not as its tip� then

the mast of the uniserial sitting �over� U is a proper prolongation of p still
satisfying B � C � D � �� and p can not have been maximal�
Now assume that p is not maximal� Then we can �nd a path p� � �p �or

p� � p�� with � � A� such that� if B �� C �� and D� denote the corresponding
sets of arrows� we have B� � C � � D� � �� This latter condition� together
with p 	� I� implies that there exists a uniserial left ��module U � with mast
p� and JU � � U �or U �� socU � � U�� Obviously� U � is the tip of a triangle of
uniserials which properly contains U �
If p satis�es B � C � D � �� then there exists a path p�� �with corres�

ponding sets of arrows B ��� C ���D��� that contains p as a subpath and is maximal
with the properties B�� � C �� � D�� � � and p�� 	� I� The path p�� is then the
mast of the tip of a maximal triangle of uniserials containing U �

We will see in 	�
�
 that� over a hereditary algebra� every �nitely generated
uniserial module U with the property that both the radical embedding JU ��
U and the socle factor projection U �� U� soc U are irreducible is the tip of
a triangle of uniserials� This is false over triangular algebras� and armed with
the results we have� we can easily construct a counterexample�

Example� Consider the quiver �

�

��

	

�� �




��

�
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and the relations
���� � ��� and �	�� � �	��

If U is the unique uniserial module with mast �	����� then JU �� U and
U �� U� soc U are both irreducible since condition �	� �and its dual� of Con�
jecture ��	�� are satis�ed� However� the maps J�U �� JU and U� soc U ��
U� soc���U are not irreducible because condition �	��a� �resp� its dual� are vi�
olated� Furthermore� both the radical embedding of U� soc U and the socle
factor projection of JU are irreducible� while the radical embedding and socle
factor projection of JU� soc�JU� are not� Moreover� it is straightforward to
check that � �U� soc U� � JU � Therefore� the �degenerate triangle of uniserials
with tip U� looks like this�

U

JU U� soc U

JU� soc�JU�



CHAPTER 	

Uniserial Modules over Hereditary Algebras

���� Notation and First Results

This chapter contains our results concerning �nitely generated uniserial
left modules over split hereditary �nite�dimensional algebras� The �rst section
provides the notational framework and presents some elementary facts� The fol�
lowing section examines those uniserials which have uniserial Auslander�Reiten
translate� and the third section exploits the results of the previous chapter to
provide a full understanding of triangles of uniserials in the hereditary situ�
ation�
Throughout this chapter� � will be a �nite quiver without oriented cycles�

K will be a �eld� and � � K� will be the split hereditary �nite�dimensional
path algebra de�ned by ��
We call a path p� a right subpath of the path p if there exists a path r

with p � rp�� Left subpaths are de�ned similarly� Two paths p�� p� are called
comparable if one is a left or right subpath of the other�
Following ��	�� if p is a path in �� a detour on p is de�ned to be a tuple

��� p�� where � � A� and p� is a right subpath of p with t�p�� � s��� and
such that �p� is not a right subpath of p� Since our quiver does not have any
oriented cycles� the detour is uniquely determined by �� By abuse of language�
we also call � itself a detour on p and write �� o p� for this situation�
Now let a scalar �� � K be given for every detour � op� De�ne I�p� �����op�

to be the left ��submodule of �e� generated by the elements ��s����� � � ��� �
���t����� � � ��� for � o p and 
�s����� � � ��� for all non�detours 
 that leave p�
We can then de�ne a left ��module U�p� �����op� by setting

U�p� �����op� �� �e��I�p� �����op��

We write U�p� instead of U�p� ����� if �� � � for every � o p �in particular if
p does not admit any detours whatsoever�� The module U�p� ����� is uniserial
with mast p� and every uniserial ��module with mast p is isomorphic to a
U�p� ����� for a suitable family of scalars �����op� Moreover�

U�p� ����� � U�p� ������� ���� � �����
��
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This means that the varieties Vp introduced in ��	� in order to parameter�
ize uniserials are full a ne spaces in the hereditary case and provide a ���
parameterization�
In general� the problem of classifying those �nite�dimensional algebras hav�

ing only �nitely many �nitely generated uniserial left modules is very complic�
ated� compare ��
�� In the hereditary situation however� it is trivial�

Lemma ������ The �nite�dimensional hereditary algebra � � K� admits
in�nitely many non�isomorphic uniserial left modules if and only if jKj ��
and � contains a subquiver of the form

Proof� If � admits in�nitely many uniserial modules� then there must be
one path p that serves as mast of in�nitely many uniserials� since there are
only �nitely many paths� By the remarks preceding the lemma� we must then
have in�nitely many di$erent families �����op� which implies that K is in�nite
and that there exists at least one detour on p�
On the other hand� if a path p with a detour � exists and K is in�nite� we

can concoct in�nitely many di$erent families �����op yielding in�nitely many
non�isomorphic uniserial modules�

���� The Auslander�Reiten Translation

This section contains the classi�cation of those �nitely generated uniserial
modules U over a split hereditary �nite�dimensional algebra which have a uni�
serial Auslander�Reiten translate �U � We will explicitly describe the Auslander�
Reiten translate� using the notation developed in the preceding section�
Initially� certain examples suggested to us that� over hereditary algebras of

�nite type� the uniserials might be �connected to projectives or injectives via
uniserials�� by which we mean that for every uniserial U � either all the modules
� iU �i � N� are uniserial or unde�ned or else all the modules ��iU �i � N��
are uniserial or unde�ned� Closer inspection proved this conjecture to be false�
we managed to classify all those hereditary algebras of �nite type for which it
does hold� and this classi�cation will conclude the section�

Proposition ������ Let p � �
���� 	

���� � � �
�n��
�� n be a path in � and

�� � K for every � o p� Write U �� U�p� ������ Then �U is de�ned and
uniserial if and only if the following two conditions are both satis�ed�
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��� There is precisely one arrow 
 leaving p�
�	� Writing 
 � i �� x� all paths ending in x and not having 
�i�� � � ��� as
left subpath are comparable�

If this is the case and if p� is the longest path ending in x and not having

�i�� � � ��� as left subpath� then p� has the same detours as p �in fact� there
can only be at most one detour�� and we have

�U � U�p�� ������

Before we prove the proposition� we give some examples to illustrate the
condition appearing in the statement�

Examples� �a� Consider the quiver �

��

��

��
�

�

�	

x

If U is the unique uniserial with mast p � ���	����� then � �U�p�� is not
uniserial�
�b� If � is given by

��
��

�� ��

��

��
�

�	

x
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and U is again the uniserial with mast p � ���	����� then �U � U�
���	������
We see that� in general� the lengths of U and �U can be arbitrarily far apart�
�c� The module � �U�p�� is not uniserial in the situation

��

��
�

��

�	
�

x

�d� In the case

��

��

��

�

��

��

�	

where� again� p � ���	����� we have � �U�p� ���� � U���������� ���� Here
we get a whole family of Auslander�Reiten sequences with uniserial end terms�
indexed by elements from the base �eld K�
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�e� Finally� if � is given by

��

��

�

��

�	

then � �U�p� ���� is not uniserial�

Proof of the Proposition� Let D � HomK���K� denote the usual
duality and let N � DHom
����� be the Nakayama functor� For x � ei�ej�

we have N � �ei
��x

�ej � � D�ei��
D�x���

D�ej�� � Furthermore� if M �

��mod is indecomposable and non�projective and P�
	

P� M �

is a minimal projective resolution� then �M � kernN �	��
If q is a path in � ending in i � V�� let q� � D�ei�� be the dual element

de�ned by

q��r� �

��
��� if q � r�

�� otherwise

for every path r ending in i�

Now let B �
n

 � A� j s�
� � f�� � � � � ng

o
n f��� � � � �n��g be the set of

arrows leaving p� We have a minimal projective resolution

L
��B

�et���

��
��

�e� U �

where the maps �� � �et��� �� �e� are right multiplications with the elements

u� ��

��
��
 � ���t����� � � ��s�����s����� � � ���� if t�
� � f�� � � � � ng�


�s����� � � ���� otherwise�

The mapsN ���� � D�et����� �� D�e��� are then induced by left multiplication
with the same elements� which implies that N �����e

�
t�����q� � e�t����u�q� � �

for every 
 � B and every path q ending in � �since the lengths of all paths
appearing in u�q are greater than ��� We have thus found the K�linearly
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independent elements ��� � � � � e�t���� � � � � �� in kern�N �����soc
L

��BD�et����� �

soc kernN ��� � soc �U � Hence we need to have *B � � if �U is to be
uniserial�
We will assume from now on that *B � �� and we will denote the single

element of B by 
�
Case �� t�
� 	� f�� � � � � ng�
This situation is rather easy� the following claim describes �U completely�
Claim� A K�basis of kernN ��� is given byn

q� jq a path ending in t�
� and not having


�s����� � � ��� as left subpath
o
�

Proof of the Claim� Using the bases fq� j q a path ending in �g of D�e���
and f�
�s����� � � ���q�

� j q a path ending in �g 
 fq� j q a path ending in t�
�
and not having 
�s����� � � ��� as a left subpathg of D�et������ the linear map
N ��� is given by the matrix�

BB�
�
� � � �

�

	
CCA

with kernel as claimed�
If we now assume that all paths ending in t�
� and not having 
�s����� � � ���

as left subpath are comparable� we can denote by p� the longest such path� Then
there is a unique ��isomorphism

U�p�� ����� �� �U � kernN ���

which sends the image of es�p�� in U�p�� ����� to �p
����

On the other hand� if there are two non�comparable paths q�� q� ending in
t�
� but not having 
�s����� � � ��� as left subpath� then the submodules of �U
generated by q�� and q

�
� respectively are clearly not comparable�

Case �� t�
� � f�� � � � � ng�
Again� we describe �U �rst�
Claim� A K�basis of kernN ��� is given byn

��t����� � � ���q�
� % ���
�s����� � � ���q�

� j q a path ending in �
o



n
q� j q a path ending in t�
� and having neither


�s����� � � ��� nor �t����� � � ��� as left subpaths
o
�

Proof of the Claim� This time� we use the basis f�
�s����� � � ���q�
� j q a

path ending in �g 
 f��t����� � � ���q�
� j q a path ending in �g 
 fq� j q a
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path ending in t�
� and having neither 
�s����� � � ��� nor �t����� � � ��� as left
subpathsg of D�et������ the map N ��� is then represented by the matrix�

BB�
� ��
� � � � � � �

� ��

	
CCA

the kernel of which is as given above�
Let(s assume now that all paths ending in t�
� and not having 
�s����� � � ���

as left subpath are comparable� again we can denote by p� the longest such path�
It is then possible to write p� � �t����� � � ���p

�� with some path p�� ending in ��
Then there is a unique ��isomorphism

U�p�� ����� �� �U � kernN ���

sending the canonical top element of U�p�� ����� to �p���%���
�s����� � � ���p
�����

Conversely� if there are two non�comparable paths q�� q� ending in t�
� but
not having 
�s����� � � ��� as left subpath� then we can de�ne elementsws � �U �
s � �� 	� as follows�

ws ��

���
��
��t����� � � ���q

�
s�
� % ���
�s����� � � ���q

�
s�
��

if qs � �t����� � � ���q
�
s for some path q

�
s�

q�s � if qs does not have �t����� � � ��� as left subpath�

The submodules of �U generated by w� respectively w� are clearly not com�
parable�

For the convenience of the reader� we include here the dual version of Pro�
position 	�	���

Proposition ������ Let p � �
���� 	

���� � � �
�n��
�� n be a path in � and

�� � K for every � o p� Write U �� U�p� ������ Then ���U is de�ned and
uniserial if and only if the following two conditions are both satis�ed�
��� There is precisely one arrow � entering p�
�	� Writing � � x �� i� then all paths starting in x and not having �n�� � � ��i�
as right subpath are comparable�

In this case� if p� is the longest path starting in x and not having �n�� � � ��i�
as right subpath� then

���U �

����
���
U�p��� if x 	� f�� � � � � ng�

U�p�� ������ otherwise� Here� �� �

��
��� if � 	� � o p��

��� if � � ��

In the initial examples we studied� it was a comparatively frequent phe�
nomenon that every uniserial U � ��mod had the property that either all
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the modules � iU for i � � were uniserial or unde�ned� or all the modules
��iU for i � � were uniserial or unde�ned� i� e� all uniserials were connec�
ted to projectives or injectives via a chain of � �translations that only involved
uniserials� Using Proposition 	�	�� and its dual� we can completely pin down
the hereditary algebras of �nite type for which this is true�

Corollary ������ Let � be a quiver having one of the Dynkin diagrams
A n � D n � E� � E�� E� as underlying graph and write � � K�� Then there exist
uniserial� non�projective and non�injective modules U�� � � � � Um � ��mod with
�Ui � Ui�� for i � f	� � � � �mg and such that neither �U� nor ���Um are
uniserial if and only if � contains one of the following quivers or their opposites
as a subquiver�

I�

� 

arrows

II�

� 	
arrows

III� IV� V� VI�

Proof� The above conditions are clearly true for � if and only if they are
true for �op� We will use this fact repeatedly in the sequel�
����� For each of the situations I to VI� we will exhibit a path p such that
U�p� plays the r�ole of U� in the above condition� The value of m is also given�

I�
m � �

p

II�
m � �

p

III�
m � �

p

IV�
m � �

p

V�
m � 	

p

VI�
m � 


p
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����� Let p be the mast of U�� Because of the structure of �� it follows that
U�p� � U��
Case �� For all vertices i on p� we have indeg�i� % outdeg�i� � 	�
Since U�p� is neither projective nor injective� � contains then either

a�

p

or b�

p

which leads to another case distinction�
Case ��a� Since �U�p� is not uniserial� Proposition 	�	�� yields that in fact the
following subquiver has to be present�

� �
arrows

p

�

Let p� be the longest path in � starting in s��� and not containing � �note
that because of the structure of the underlying graph of �� this speci�cation
is unambiguous�� Let q� be the longest path terminating in t�p�� and not
being a left subpath of p�� Then de�ne p� to be the longest path starting
in s�q�� and not being a right subpath of q�� Continue in this fashion until
the end of the arm is reached� Now list the vertices of qj in opposite or�

der� t�qj�� i
�j�
� � � � � � i

�j�
lj
� s�qj�� By Proposition 	�	�	� we then have ���U�p� �

U�p��� ���U�p� � U�e
i
���
�
�� ��	U�p� � U�e

i
���
�
�� � � � ����l����U�p� � U�e

i
���
l�

��

���l����U�p� � U�p��� ���l��	�U�p� � U�e
i
���
�
�� � � � ����l��l����U�p� � U�e

i
���
l�

��
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���l��l��l��U�p� � U�p	� and so on� Eventually� an injective module is reached�
and hence this case is impossible�
Case ��b� If length�p� � �� then � must contain the subquiver

�

�p �

� �
arrows

in order for �U�p� not to be uniserial� This situation however has already been
shown to be impossible in Case ��a��
If length�p� � �� again using the fact that �U�p� is not uniserial� we can at

least �nd a subquiver in � of the form

�

k

p

where k � � is as large as possible such that indeg�i� � outdeg�i� � � for
	 � i � k� If outdeg��� � 	� then we are in situation I� and are done� If
indeg��� � � and outdeg��� � �� then ��kU�p� is injective� and thus this
cannot happen� The remaining case is indeg��� � 	 and outdeg��� � �� which
is covered by IIop�
Case 	� There exists a vertex i on p with indeg�i� % outdeg�i� � 
�
Since U�p� is neither injective nor projective� we are left with the following
�mutual exclusive� cases up to opposites� Again� we mark the path p and give
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its length�

a�

��

�

b�

��

c�

��

d�

��

e�

��

f�

�	

g�

�	

h�

��

i�

��

Case 	�a� As in Case ��a�� we de�ne p� to be the longest path starting in s���
and not containing �� and continue with q�� p�� q� and so on� Again� we see
that ��iU�p� is uniserial or unde�ned for all i � �� a contradiction�
Case 	�b� Since �U�p� is not uniserial� � must in fact contain the subquiver

��

�
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If length�p� � 	� then we are in situation III� hence we will assume length�p� � �
from now on� The case outdeg�s���� � 	 is covered by IV� if outdeg�s���� � �
and indeg�s���� � �� then ���U�p� � U��� is injective� We are thus left with
the situation

��

�

� ��

��

where p � �� Then ���U�p� � U�
��� and ���U�p� � U�� ������� Since
���U�p� is not injective� we have either indeg�s����� � �� in which case we are
dealing with situation VIop� or indeg�t����� � �� which is impossible since it
develops like Case ��a� above�
Case 	�c� Since � �U�p�� is supposed to be non�uniserial� the following sub�
quiver

��

needs to be present� This however is situation IIop�
Case 	�d� Proposition 	�	�� leaves two possibilities for non�uniserial �U�p��

��

��

and 	�

��
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Case 	�d��� We have length�p� � 	 because of the shape of �� The situation

�

��

�

�� �

with p � �
 � yields ���U�p� � U���
�
� which in turn develops as in Case ��a�
and is hence excluded�
Case 	�d�	� If length�p� � 
� then we are dealing with case III� Now assume

length�p� � 	� Since ���U�p� is not injective and because

is not of �nite type� we are left with the case VIop�
Case 	�e� Since �U�p� is not uniserial� we are either in situation IV or we deal
with

�

��

�

The shape of � dictates that indeg�
� � �� which implies that this situation
develops again as in Case ��a� and is hence impossible�
Case 	�f� If we are not in situation V� then length�p� � 
 and � has the
subquiver

�

p

�
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with outdeg�
� � �� If p� is the longest path in � terminating in t��� and not
containing �� then �U�p� � U�p�� is uniserial� a contradiction�
Case 	�g� Since �U�p� is not uniserial� we have either

��

�	

or 	�

�	

Case �� is covered by IIop and case 	� by V�
Case 	�h� Again� �U�p� being uniserial forces us to distinguish two subcases�
but they both cannot appear in a quiver of �nite type�
Case 	�i� is covered by VIop�

���� Triangles of Uniserials

In this section� we will exploit the results of Section ��
 to describe the
much more transparent hereditary situation� We will see that the maximal
triangles of uniserials over hereditary algebras are disjoint and that virtually
all irreducible maps between uniserial modules �more precisely� all but the
radical embeddings of projectives and the socle factor projections of injectives�
are in fact embeddable in such maximal triangles� An interesting consequence
of this is the fact that� in the wild case� every regular uniserial is quasi�simple
or the tip of a triangle of uniserials�
We start with strengthenings of the results from Section ��
 for the hered�

itary situation�

Theorem ������ Every triangle of uniserials over the hereditary algebra
� � K� is contained in a unique maximal one� In particular� di	erent max�
imal triangles are disjoint�

Proof� From the proof of Theorem ��
��� we know how the masts of the
tips of the maximal triangles containing a given uniserial look like� In the
absence of an ideal I of relations� it is clear that there is always precisely one
such mast� giving rise to precisely one containing maximal triangle�

Theorem ������ Let U � ��mod be a uniserial module over the heredit�
ary algebra � � K�� If p � �

���� 	
���� � � �

�n��
�� n is a mast of U � then the
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following conditions are equivalent�
�a� The radical embedding JU �� U is irreducible�
�b�We have n � 	� outdeg�j� � � for j � �� � � � � n�� and either outdeg�n� � �
or indeg�l� � � for l � 	� � � � � n�

Proof� Taking into account the proven parts of Conjecture ��	�� and the
fact that we don(t have any relations here� it remains to be shown that� if
there exists arrows 
� � n �� y and � � z �� i with z 	� f�� � � � � ng and
i � f	� � � � � ng� then JU �� U is not irreducible�
Assuming that such arrows exist� we will construct a representation V �

��Vx�� �g��� and non�splitting ��linear maps ! � JU �� V and ' � V �� U
such that '! equals the radical embedding JU �� U � As in the previous
chapter� we identify U with the representation U � ��Ux�� �f��� of �� where

Ux �

��
�K� if x � f�� � � � � ng�

�� else

and

f�i � id for every i � f�� � � � � n� �g�

In order to de�ne V � set

Vx �

����
���
K� if x � f�� y� zg�

K �K� if x � f	� � � � � ng�

�� else

g� �

����������
���������

�
�
f�

�
� if s��� � � and t��� � f	� � � � � ng�

f� � f�� if fs���� t���g 
 f	� � � � � ng��
�
��

�
� if � � ��

��� ��� if � � 
�

�� else

The homomorphisms

JU

��
x�

V
����x�

U

are de�ned by

!x �

��
�
�
�
�

�
� if x � f	� � � � � ng�

�� else
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and

'x �

����
���
�� if x � ��

��� ��� if x � f	� � � � � n� �g�

�� else�

It is straightforward to check that these are indeed ��homomorphisms and that
'! equals the embedding JU �� U � If � � ��x� � V �� JU were a splitting
of !� then we would have �� � �z � �� which would imply �i � �� but this is
impossible� Every splitting � � ��x� � U �� V of ' would satisfy ����� � �
and hence �n��� � ��� ��� implying �y 	� �� a contradiction�

A typical mast p of a uniserial module with irreducible radical embedding
hence looks like one of the following�

Either i�

p

or ii�

p

Obviously� condition �i� corresponds to a projective module U � furthermore�
condition �ii� is self�dual and inherited by all subpaths� These observations�
combined with the dual version of the above theorem and with Theorem ��
���
already constitute the proof of the following corollary�

Corollary ������ Let U � ��mod be a uniserial module with length n�
�a� If the radical embedding JU �� U is irreducible� then there is a chain of
irreducible maps

Jn��U �� Jn��U �� � � � �� JU �� U�

�b� If the socle factor projection U �� U� soc U is irreducible� then there is a
chain of irreducible maps

U �� U� soc U �� � � � �� U� soc�n��� U �� U� soc�n��� U�

�c� The following are equivalent�
��� U is the tip of a triangle of uniserials
�	� U is simple or both the radical embedding JU �� U and the socle

factor projection U �� U� soc U are irreducible maps�
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�
� If p � �
���� 	

���� � � �
�n��
�� n is a mast of U � then outdeg�j� � � for

j � �� � � � � n� � and indeg�l� � � for l � 	� � � � � n�
�d� If U is not projective and JU �� U is irreducible� then U is the tip of a
triangle of uniserials�
�e� If U is not injective and U �� U� soc U is irreducible� then U is the tip of
a triangle of uniserials�

Note that� in this corollary� we were able to characterize the tips without
alluding to combinatorial terms such as masts or leaving arrows� This allows us
to combine these results with the well�known information about the structure
of Auslander�Reiten quivers of wild hereditary algebras contained for example
in ��� Theorem ������

Corollary ������ Let � � K� be a wild hereditary algebra� Then all
but �nitely many uniserial modules in ��mod are regular and quasi�simple�

Proof� The dimension vectors of the preinjective �resp� postprojective�
modules can be obtained through iterated application of the Coxeter trans�
formation �resp� its inverse� to the dimension vectors of the indecomposable
injectives �resp� projectives�� In the wild case� the Coxeter matrix has expo�
nential growth� and since the Loewy length of � puts an upper bound on the
lengths of uniserial ��modules� almost all uniserials are regular� The regular
components are isomorphic toZA� and all irreducible maps are either injective
or surjective� Combined with ����
� this yields that both the radical embedding
and the socle factor projection of the non�quasi�simple uniserials are irredu�
cible� Using Corollary 	�
�
� we see then that these modules are actually tips
of triangles of uniserials� On the other hand� we know that there can only exist
�nitely many such triangles�
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Methods to Determine Coxeter Polynomials

���� Introduction

The purpose of this chapter is to establish a reduction formula for the char�
acteristic polynomial 	
 of the Coxeter matrix of a split �nite�dimensional
algebra � of �nite global dimension� In fact� when � is put together from
subalgebras in a certain natural fashion� we express 	
 in terms of the Coxeter
polynomials of these subalgebras� In concrete computations� repeated applic�
ation of this reduction principle o$ers a signi�cant edge over direct use of the
de�nition� This result will be presented in the following section� it has recently
been published in �
��
Section 
�
 will then specialize on the hereditary case� where this reduc�

tion principle yields explicit expressions for the Coxeter polynomials of large
families of quivers� Moreover� a combinatorial interpretation of the entries of
the Coxeter matrices of hereditary path algebras allows us to establish formu�
las for Coxeter polynomials of some quivers which cannot be treated by the
above�mentioned reduction process� These results were already presented in
�	�� we include them again here in order to illustrate the method�
Throughout� � will be a �nite quiver with vertex set V� and � � K��I

will be a path algebra modulo an �admissible� ideal of relations over a �eld K
such that dimK � ��� In order to avoid excessive subscripts� we will identify
a vertex e � V� with the corresponding primitive idempotent of � given by
the path of length � centered at e� Recall that the V��V� matrix

C
 � �dimK e�f��e�f��V�	V�

is called the Cartan matrix of � and that� in case jC
j � det�C
� 	� � �which
is always satis�ed if � has �nite global dimension�� the Coxeter matrix of � is
de�ned as

!
 �� �
tC
C

��

 �

where tC
 denotes the transpose of the matrix C
� We will study the Coxeter
polynomial 	
�T � � jTE � !
j of ��

��
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���� The Reduction Formula

Let r be a vertex of the quiver � and p a path in �� We say that p properly
passes through r� if p can be written in the form p � p�rp� with paths p�� p� in
� of length � ��
For n � N�� we say that p properly passes through r precisely n times� if

p may be written in the form p � pn��rpnr � � � rp� with paths p�� � � � � pn�� of
length � � which do not properly pass through r�
Moreover� an admissible ideal I of relations in K� is called r�separated�

in case I can be generated� as an ideal� by a set R of relations such that for
every

P
i �ipi � R with �i � K n f�g and distinct paths pi in �� none of the pi

properly passes through r�
We denote by � n frg the quiver obtained from � by deleting the vertex r

and all adjacent arrows� If � is the empty quiver without vertices and arrows�
then K� is de�ned to be the trivial zero�dimensional K�algebra with Coxeter
polynomial ��
The conclusion of the following lemma essentially allows us to count nonzero

residue classes of paths in � in a similar way as one counts paths in the case
of a �nite�dimensional path algebra�

Lemma ������ Consider a �nite�dimensional K�algebra � � K��I and
let r � V� be a vertex such that I is r�separated� Then
�a� dimK r�r � �
�b� If we set )� �� � n frg and )� �� K)���I �K)��� then the assignment

u� v � w ��� uv % w

yields an isomorphism
�r�

K
r� � )�



�� �

of )��)��bimodules�

Proof� For n � N� we denote by P �n� the K�subspace of K� generated
by all paths starting and ending in r and properly passing through r precisely
n � � times� Let R 
 I be a generating set of relations which do not involve
paths properly passing through r�
As an immediate consequence of the de�nitions� we get� If � is an element

of R� and p is a path starting in r� while q is a path ending in r� then

q�p �


n��

P �n�����

Hence�

rIr �
M
n��

I � P �n���	�
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We write &P �n� �� P �n���I � P �n��� If moreover we denote by J the Jacobson
radical of �� equation �	� yields

rJr �
M
n��

&P �n���
�

Next� we prove
&P �n� �

On &P ����

where
Nn &P ��� is the n�fold tensor product of &P ��� with itself� taken over K�

Together with dimK � � � and �
�� this will give us &P ��� � � and hence
statement �a��
The exact sequence

I � P ��� P ��� &P ��� �

induces the upper sequence in the following commutative diagram� which has
exact rows�

nL
k��

�Nk�� P ��� � �I � P �����
Nn�k P ���

�
f

Nn P ���

g 


Nn &P ���

h

�

I � P �n� P �n� &P �n� �

Here� the maps f and g are de�ned by

g�p� � p� � � � � � pn� � p�p� � � � pn

and

f�p� � � � � � pk�� � x� pk�� � � � � � pn� � p� � � � pk��xpk�� � � � pn�

In order to prove that h is an isomorphism� it su ces to show that f is onto
since g is an isomorphism� We only have to consider the case n � 	� Pick
x � I � P �n� and write x �

P
i �iqi�ipi with �i � K n f�g� �i � R and

paths pi� qi starting resp� ending in r� Because of ��� and �	�� we may assume
qi�ipi � P �n� for all i� Write pi � pi�rpi� and qi � qi�rqi� where pi� and qi�
have smallest possible length � �� Then we have qi��ipi� � I � P ���� Moreover
either pi� � r and qi� � P �n���� or pi� � P �n��� and qi� � r� or else there is
some ki � f	� � � � � n � �g such that pi� � P �n�ki� and qi� � P �ki���� In either
case� we get qi�ipi � imf since multiplication of paths yields an isomorphismNk P ��� 


� P �k�� Consequently� x � imf �
Now consider the map � � �r�Kr� � )�� � from part �b� of the lemma�

Obviously� it is well�de�ned� )��)��bilinear and surjective� In order to �nd a left
inverse � to �� we start with a K�linear map �� � K�� �r�Kr� � )�� de�ned
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on the paths p in � as follows� if p can be written in the form p � p�rp� with
paths p�� p� �not necessarily of length � ��� we set

���p� �� �p� % Ir�� �p� % rI� � ��

This is well�de�ned� because if p � q�rq� is a di$erent factorization of this
kind� then either q� � uq�� or q� � q��u with a suitable u � P ���� But P ��� 
 I
in view of �a�� and thus �q� % Ir� � �q� % rI� � �� Analogously� one derives
�p� % Ir�� �p� % rI� � ��
If p cannot be written in the form p�rp�� we set

���p� �� �� �p % I �K)���

Now suppose x �
P

i �iqi�ipi � I as above� If pi can be written in the form
pi � pi�rpi� with paths pi� and pi�� then qi�ipi� � Ir and ���qi�ipi� � ��
Similarly� if qi admits a factorization qi � qi�rqi�� we have ���qi�ipi� � �� The
remaining case is qi�ipi � I � K)�� and again we obtain ���qi�ipi� � �� Thus
���x� � � and �� induces a K�linear map � � � � �r�K r� � )� which by
construction is left inverse to ��

The union of quivers is given by the union of the vertex sets and the disjoint
union of the arrow sets�
Now we are in a position to prove the main result�

Theorem ������ Let ����� be two �nite quivers with V�� � V�� � frg�
and let � be the union of �� and ��� Suppose that I 
 K� is an r�separated
ideal of relations such that � �� K��I is �nite�dimensional� Set )�� �� ��nfrg
and )�� �� �� n frg and de�ne the algebras ��� )������ )�� canonically�

�i �� K�i��I �K�i� and )�i �� K)�i��I �K)�i� for i � �� 	�

Then

jC
�j � jC�
�j� jC
�j � jC�
�j and jC
j � jC
�jjC
� j�

If this last determinant is nonzero� the Coxeter polynomial of � is

	
 � 	
�	�
� % 	�
�	
� � �T % ��	�
�	�
��

Proof� We need some additional notation� for every e � V)��� let ae ��
dimK r�e and +ae �� dimK e�r� Accordingly� for every e � V)��� set be ��
dimK r�e and +be �� dimK e�r� We consider a� +a� b and +b as column vectors
and write C� C�� C�� )C�� )C� instead of C
� C
� � C
� � C�
� � C�
� �
First we observe that r��e � r�e and e��r � e�r for all e � V��

since there are no arrows connecting V)�� and V)�� and dimK r�r � � by
Lemma 
�	��� Moreover� I �K�� is an r�separated ideal in K�� because every
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relation which does not involve any paths properly passing through r lies either
in K�� or in K��� Applying Lemma 
�	�� to ��� we see that�

dimK r��r � � and

dimK e��f � dimK e)��f % +aeaf for all e� f � V)���

Thus

C� �

�
� )C� % +a ta +a

ta �

	
A �

and by subtracting suitable multiples of the last row from the others� we get
jC�j � j )C�j� Analogously� we obtain jC�j � j )C�j� If we set )� �� � n frg and
)� �� K)���I �K)��� another application of Lemma 
�	�� together with

C�
 �

�
� )C� �

� )C�

	
A

gives us

C �

�
BBB�
)C� % +a ta +a +a tb

ta � tb

+b ta +b )C� %+b tb

	
CCCA �

and hence jCj � j )C�jj )C�j�
Now suppose C is invertible over Q� Then the same is true for C�� C�� )C�

and )C�� and we write !� !�� !�� )!�� )!� instead of !
� !
� � !
� � !�
�
� !�
�

�
If A and B are invertible matrices such that B � SA tS for some invert�

ible matrix S� we will write A � B� Note that in this case S�� tAA���S�� �
� tBB��� and therefore� tAA�� and� tBB�� have the same characteristic poly�
nomial�
Obviously� we have

C� �

�
� )C� % +a ta +a

ta �

	
A �

�
� )C� +a� a

� �

	
A �� D��

Moreover� observe that

D��
� �

�
� )C��

�
)C��
� �a� +a�

� �

	
A �

and hence

� tD�D
��
� �

�
� )!� )!��a� +a�

t�a� +a� )C��
�

t�a� +a� )C��
� �a� +a�� �

	
A �
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Similarly� !� and �
� t�b� +b� )C��

� �b� +b�� �
t�b� +b� )C��

�

)!��b� +b� )!�

	
A

have the same characteristic polynomial� Applying the same reasoning to the
full algebra � and using

!�
 �

�
� )!� �

� )!�

	
A �

we obtain that ! and�
BBB�

)!� )!��a� +a� �
t�a� +a� )C��

� � � � t�b� +b� )C��
�

� )!��b� +b� )!�

	
CCCA

have the same characteristic polynomial as well� Here� we set

� � t�a� +a� )C��
� �a� +a� %

t�b� +b� )C��
� �b�

+b��

�Note that the quadratic form ��x� � txC��
�

x has signi�cance in its own right

because it is tightly connected to the Euler characteristic of the algebra )�� see
���� p� �����
If �nally we abbreviate

� �� ��T % ���

�� �� �T % �� �
t�a� +a� )C��

� �a� +a��

�� �� �T % �� �
t�b � +b� )C��

� �b � +b��

we recognize the theorem as a consequence of the following lemma�

Lemma ������ Let R be a commutative ring and F � Mn�R� a matrix of
the following form�

F �

�
B� F� f� �

g� �� % � % �� g�
� f� F�

	
CA

where F� � Mn��R�� F� � Mn��R�� n�%n�%� � n� ����� �� � R� f�� tg� � Rn�

and f��
tg� � Rn� � Then

jF j �

����� F� f�
g� ��

����� jF�j% jF�j
����� �� g�
f� F�

�����% �jF�jjF�j�

Proof� Develop the determinant with respect to the �n� % ���th row or
column�



�
�
 THE HEREDITARY CASE ��

An obvious induction yields the following generalization of Theorem 
�	�	�

Corollary ������ Let �i� i � �� � � � �m� be �nite quivers with V�i�V�j �
frg for i 	� j� and let � be the union of the �i� Suppose that I 
 K� is
an r�separated ideal of relations such that � �� K��I is �nite�dimensional�
Set �i �� K�i��I � K�i� and )�i �� �i n frg and )�i �� K)�i��I � K)�i� for
i � �� � � � �m� Then

jC
i
j � jC�
i

j for all i and jC
j �
mY
i��

jC
ij�

Moreover� if this last determinant is nonzero� we have

	
 �
� mY
i��

	�
i


� mX
i��

	
i
	�
i

� �m� ���T % ��


�

By way of caution� we point out that the polynomials 	�
i need not divide
	
�

���� The Hereditary Case

If � is hereditary� i� e� if � � K� and � is a �nite quiver without ori�
ented cycles� then the matrix C
� and consequently also the matrix !
 and the
polynomial 	
� depend only on the quiver � and not on the base �eld K� In
fact�

C� �� C
 � �* paths from f to e in ���e�f��V�	V��

and the following matrix�

M� �� �* arrows from f to e in ���e�f��V�	V��

satis�es C��
� � E �M�� where E is the V� � V� identity matrix� With this

in mind� one obtains a combinatorial interpretation of the entries of !� �� !

as follows� Namely� for e� f � V�� a twisted path from e to f is de�ned to be
a tuple �
� p� with an arrow 
 � A� starting in f and an oriented path p in �
starting in e such that t�p� � t�
�� Roughly speaking� a twisted path consists
of a ,standard( path to which we attach an inverted arrow at the end� With
this convention� we obtain�

Proposition ������ The Coxeter matrix of a �nite quiver � without ori�
ented cycles is

!� � �* twisted paths from e to f �* paths from e to f��e�f��V�	V��

Proof� This follows from the above description of C� and its inverse and
the fact that the number of twisted paths from e to f is the sum of all products
�number of paths from e to g���number of arrows from f to g� for g � V��
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A more general formula for the entries of powers of !� in terms of gener�
alized twisted paths will be given in Section ��	� What was called a �twisted
path� here will be called a ���endtwisted path� in that section�
It is interesting to note that the reduction formulas for the Coxeter poly�

nomials and for the characteristic polynomials of the adjacency matrices of
quivers of the type considered in Corollary 
�	�� are exactly the same� �Of
course� the term �T % ��� which is the Coxeter polynomial of a one�vertex
quiver without arrows� has to be replaced by the characteristic polynomial of
the corresponding adjacency matrix� i� e� by T �� The reason can again be found
in Lemma 
�	�
�
Observe moreover that there is a tight connection between 	� �� 	
 and

the characteristic polynomial of the adjacency matrix of � in case every vertex
of � is either a sink or a source� see e� g� ����
We set

vk ��
T k � �

T � �
for every k �Z�

The linear graph A k with k � � vertices has Coxeter polynomial vk�� as one
easily derives from Theorem 
�	�	 by induction� The orientation of the arrows
does not have any impact on the formula here� indeed� this is obviously true
for A � � and thus follows inductively for higher values of k� In view of these
remarks� a straightforward computation yields the following

Corollary ������ Let �� and �� be �nite quivers without oriented cycles�
Then the quiver

���

k arrows

�� �
s

�
r

��

has Coxeter polynomial

	��	�� � k�T	��nfrg	��nfsg�

The quiver

� � ��� � �
s

��

k arrows

r
��

has Coxeter polynomial

vk	��	�� � Tvk��
�
	��nfrg	�� % 	��	��nfsg

�
% T �vk��	��nfrg	��nfsg�
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irrespective of the orientation of the k arrows linking �� and ���

We conclude this chapter with an example of a class of quivers which cannot
be tackled with Theorem 
�	�	 and its corollaries�

Proposition ������ If � is the quiver

�

�

�

�

� � �

� � �

� � �

k� arrows

k� arrows

km arrows

�
�
� �

�
�

�

�

�

�

�
�
�

with m � N and k�� � � � � km � N �the case k� � � � � � km � � corresponding to
an m�fold arrow between two vertices�� then

	� �
� mY
i��

vki


�
�m� ����T % ��� �m�T � �m� 	��T % ��

mX
i��

vki��
vki



�

Proof� We may assume k� � � � � � kl � � and kl��� � � � � km � �� For
i � fl% �� � � � �mg� set

!i ��

�
BBBB�

��
� ��
� � �

���
� ��

	
CCCCA � Mki���Z�

and

+!i ��

�
BBBB�

�
� �
� � �

���
� �

	
CCCCA � Mki���Z��

�Entries which are not shown are assumed to be zero�� Then !i is the Coxeter
matrix of a linear graph with ki�� vertices and all arrows pointing in the same
direction� Counting the paths and twisted paths of � as in Proposition 
�
���



�� CHAPTER �
 METHODS TO DETERMINE COXETER POLYNOMIALS

we get

!� �

�
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB�

lm%m�l�� �m��� �m��� �m��� �m
l % � � � ��

l
���

���
���

���
+!l�� ���

���
���

l �
���

���
l % � �

���
���

l
���

���
���

���
���

+!l�� ���
���

l
���

���
���

���
��� �

� � � �
���

l % �
���

���
���

l
���

���
���

���
���

���
+!m ���

l
���

���
���

l � � � ��

	
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Now consider the matrix TE � !�� add the last column to those corres�
ponding to the last columns of the +!i� and add the l�fold of the last column
to the �rst� Next subtract the T �fold of the �rst row from the last� Finally
develop the resulting determinant with respect to the last row and note that

�������������������

T�m%l%� � � �
��

TE�!l��

��
TE�!l��

� � �
��

TE�!m

�������������������
is the Coxeter polynomial of a star all arrows of which point away from the
center� By Corollary 
�	��� it is equal to

� mY
i�l��

vki


� mX
i�l��

vki��
vki

� �m� l � ���T % ��


�
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When developing the remaining determinant�������������������

� � � m
�

TE�!l�� ������
TE�!l�� ���

� � �
���
���TE�!m
�

�������������������
with respect to the �rst row� it is crucial to observe that the determinant of the
matrix obtained by replacing the last column of TE � !i by t�� � � � �� is just
vki��� To simplify the resulting expression� one uses the identity

�T % ���
vk��
vk

� T
vk��
vk

�

The result follows�
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CHAPTER �

The Spectral Classes of Unicyclic Graphs

	��� Introduction� Notation� and Preliminaries

In this chapter� we study the Coxeter polynomials of the di$erent orienta�
tions of a �nite graph that contains precisely one cycle� The collection of all
those orientations that yield the same Coxeter polynomial is called a spectral
class of that graph�
We will determine the number of spectral classes of such a unicyclic graph

and show that their spectral radii are di$erent in case the graph is wild� The
proof uses the main result from the preceding chapter as well as covering tech�
niques� Moreover� the entries of powers of the Coxeter matrix of an arbitrary
�nite quiver without oriented cycles are calculated�
The results presented here were obtained in joint work with Martha Takane

and will appear in ����
We consider a graph # and we will assume throughout that # is connected

and does not have any loops �multiple edges between two vertices are allowed�
however�� We denote the set of vertices of the graph # by V# and its edge
set by E#� The graph is completely determined by its adjacency matrix A� �
�aij� �ZV�	V� which is the symmetric matrix whose ij�th entry is the number
of edges in # between the vertices i and j�
If � is a total order on V#� we write �#� �� for the following quiver� The

set of vertices of �#� �� is the set of vertices of #� and there are aij arrows
from i to j if i � j and none otherwise� Note that �#� ��� de�ned in this way�
has no oriented cycles� and� furthermore� every quiver without oriented cycles
having # as its underlying graph arises in this fashion from some ordering ��
The Coxeter matrix !����� �as de�ned in 
��� and hence also the Coxeter
polynomial 	����� depend only on the quiver �#� �� and not on the speci�c
choice of �� The spectral radius of !����� will be denoted by ������� Recall
that ������ � maxfj�j j � � C is an eigenvalue of !�����g�
If #� is a subgraph of # �i� e� #� is a graph having a subset of V# as vertex

set and a subset of E# as edge set�� then � induces a total order on V#�� again
denoted by �� The subgraph #� is said to be full if for any two vertices in #�

��
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the set of edges between them is the same in #� as in #� We say that #� is a
proper subgraph of # if it is a subgraph with #� 	� #�
An essential cycle of # is a full subgraph C of # having m � 
 vertices

x�� � � � � xm�� such that there are edges between xi and xi�� for i � �� � � � �m�	
and also between xm�� and x�� The graph # is called unicyclic in case it
contains precisely one essential cycle�
A vertex x � V# is called a sink of �#� �� if there is no arrow in �#� ��

that starts in x� similarly� x is called a source if there is no arrow terminating
in x� We say that �#� �� has sink�source orientation if every vertex is either a
sink or a source� These quivers are also commonly called bipartite�
Now let x � V# be a source of �#� ��� We denote by rx�#� �� the quiver

which is obtained from �#� �� by reversing the orientation of all the arrows
containing x� In this way x becomes a sink of rx�#� ���
We say that r � rxm � � � rx� is an admissible change of orientation for �#� ��

provided that x� is a sources of �#� �� and xi is a source of rxi�� � � � rx��#� ��
for all i�
The following is a collection of well known results which we repeat here for

the convenience of the reader�

Proposition ������ Let # be a �nite graph and � a total order on its
vertex set�
�i� If M � M����� � ZV�	V� is the matrix whose ij�th entry is equal to the
number of arrows from j to i in �#� ��� then we have A� �M % tM and

!����� � �
tM � E����E �M��

It follows that !�����op � !
��
����� and also 	����� � 	�����op because of !����� �

�E �M��� t!�����op�E �M��
�ii� ���� 	����� � 	r����� for every admissible change of orientation r of �#� ���
�iii� ��
�� If x � V#� then there exists an admissible change of orientation r
of �#� �� such that x is the unique source of r�#� ���
�iv� Assume that # does not contain any essential cycles and let �� be another
total order on V#� Then there exists an admissible change of orientation of
�#� ��� say r� such that the quivers r�#� �� and �#� ��� are equal� In partic�
ular� 	����� � 	������ only depends on # and not on the orientation�

Let # be �nite and let � be a total order on V#� It is well known that
# is a Dynkin diagram if and only if ������ � � and 	�������� 	� �� # is an
Euclidean graph if and only if ������ � � and 	�������� � �� We call both
# and �#� �� wild in all other cases� The following theorem describes this
situation�
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Theorem ������ Let �#� �� be wild�
�i� ��� �
�� The spectral radius ������ is a simple root of 	����� which is bigger
than �� Moreover� j�j � ������ for all eigenvalues � 	� ������ of !������ In
particular� if � � � and 	�������� � �� then � � �������
�ii� ��� 
�� Let #� be a proper subgraph of # �not necessarily full� and assume
that either �#� �� has a sink�source orientation or else # has no essential
cycle� Then ������� � �������

	��� Iterated Coxeter Transformations

Let # be a �nite graph and � a total order on V#� We are going to describe
the entries of powers of the Coxeter matrix ! � !����� in combinatorial terms�
extending Proposition 
�
���

Definition ������ A sequence q � �p�� ��� p���� ����� � � � � ��� p�� with � �
�� oriented paths p�� � � � � p� and arrows ��� � � � � �� in �#� �� is called an ��twisted
path from s�p�� to t�p�� if t�pi��� � t��i� and s�pi� � s��i� for i � �� � � � � ��
The sequence q is called ��endtwisted� if in addition � � length�p�� ��

*�arrows belonging to p�� holds� If q is as above� de�ne

lengthi�q� �� length�pi��� for i � �� � � � � � % �

and

jqj �� �%
�X

i��

length�pi��

The set of all ��twisted paths in �#� �� from e to f is denoted by T ��e� f�� and
the subset of all ��endtwisted paths from e to f is called E��e� f��

Proposition ������ Let n be a natural number and e� f � V#� Then

�!n�e�f �
nX
���

����n��

�
� X
q�E��e�f�

�
jqj% n� � � �

n� �

�
�

X
q�T ����e�f�

�
jqj% n� �

n� �

�	A

Proof� If we set M � �*arrows from j to i�i�j�V� and C � �E �M����
then ! � tCM � tC� and an easy induction shows

!n � � tCM � tC�n �
nX
���

����n��
� X

�n��


�n��

ni�� with n


�P
i
�

ni

tCn�

�Y
i��

M tCni
�
�M � E��
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Now remember that C counts oriented paths in �#� �� and� more generally�

�Ck�e�f �
X

ppath fromf to e

�
length�p� % k � �

k � �

�
�

Using the de�nition of T ����e� f�� it follows

� tCn��
�Y

i��

M tCni��e�f �
X

q�T ����e�f�

�Y
i��

�
lengthl���i�q� % ni � �

ni � �

�

The result is now a consequence of the following identity� valid for all non
negative u� r�� � � � � r��

X
�u��


�u��

ui�� with u


�P
i
�

ui

�Y
i��

�
ri % ui � �

ui

�
�

�
�

�P
i��

ri� % u� �

u

�

�Choose u elements with repetition from a disjoint union of � sets� the i�th
of which having ri elements��

	��� Galois Coverings

Let #� &# be �not necessarily �nite� graphs and let � and &� be total orders
on their respective vertex sets� Following ���� ���� we say that an epimorphism
of quivers � � � &#� &�� �� �#� �� is a Galois covering de�ned by the group G�
if the following conditions are satis�ed�
�� G � Aut�� &#� &��� is a group of quiver automorphisms which acts freely
�i� e� the identity is the unique element of G leaving any vertex of � &#� &��
�xed��
	� �����x� � Gx� for every arrow or vertex x in � &#� &���
Let �#�j�� ��j�Nbe a sequence of full �nite subquivers of the �not necessarily

�nite� connected quiver �#� ��� We assume that # has no essential cycles and
is bounded� i� e� that there exists K � N such that every x � V# is contained
in at most K edges� We say that �#�j�� ��j has limit �#� �� and write

�#� �� � lim
j��

�#�j�� ��

if for any arrow � in �#� ��� there exists N � N such that � is an arrow in
�#�j�� �� for all j � N � In this case� according to ��� and ����� the sequence
�����j����� converges� and we de�ne

������ �� lim
j��

����j� ����
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Obviously� this de�nition does not con-ict with the previously de�ned ������
in case # is �nite� Furthermore� ������ does not depend on the orientation �
by ������iv��
In the sequel� we will constantly use the fact that� if � � � &#� &�� �� �#� ��

is a Galois covering and # is bounded� then &# is bounded as well�

Lemma ������ �i� Let �#� �� be a �nite� connected quiver and let � �
� &#� &�� �� �#� �� be a Galois covering de�ned by the group G such that &#
does not contain essential cycles� Then�
i��� �� ������ � �������
i�	� If G is �nite� then �� ������ � �������
i�
� If �#� �� is bipartite� # unicyclic� and G �Z� then �� ������ � �������

�ii� Let �#� �� be a �nite quiver whose underlying graph # is unicyclic� Then
there exists a Galois covering � &#� &�� �� �#� �� with group Z such that &#
does not contain essential cycles� Moreover� &# depends only on # and not on
the orientation ��
�iii� Let # be a unicyclic graph with essential cycle C such that jVCj is even�
Then # admits a sink�source orientation ��� Furthermore� whenever � is
another orientation of #� we have ������� � �������

Proof� �i�� Parts �i��� and �i�	� are contained in ����� we derive �i�
� from
��� taking into account that Zis an amenable group�
�ii�� Let C � fx�� � � � � xm��g be the essential cycle of �#� ��� We de�ne a
Galois covering � � � &#� &�� �� �#� �� as follows� V &# � V#�Z� and the set
of edges between the vertices �y� n�� �z�m� is

E &#��y� n�� �z�m�� �

���
��
E#�y� z�� if m � n and fy� zg 	� fx�� xm��g�
E#�xm��� x��� if m � n� � and y � xm��� z � x��
�� otherwise

and &� is the induced orientation of &#� Then we set ���y� n�� �� y and extend
this naturally to the arrows� The group Zoperates in an obvious fashion on
� &#� &���
�iii�� It is clear that a sink�source orientation �� exists� If � is another orienta�
tion� we use �ii� to �nd a graph &# and Galois coverings � � � &#� &��� �� �#� ���
and �� � � &#� &�� �� �#� �� de�ned by Z� The result follows�

������� �
�i
	�

�� ������� � �� ������ �
�i
��

�������

Proposition ������ Let �#�� �� be a proper �not necessarily full� sub�
quiver of a wild unicyclic quiver �#� ��� Assume #� contains no essential



�	 CHAPTER �
 THE SPECTRAL CLASSES OF UNICYCLIC GRAPHS

cycles� Then

������� � �������

Proof� Let C be the essential cycle of #� with m � jVCj� By ��
���i�	�� we
may assume without loss of generality that m is even� Thus� let �� be a sink�
source orientation of #� Let � � � &#� &�� � �#� �� and �� � � &#� &��� � �#� ���
be Galois coverings de�ned by Z� as in ��
���ii�� We then get

������� �
�
�
�

�������� �
�
�
�

������� ��
	
�
�� ��� ���� � �� ������ �

�
	
�
�������

	�	� The Main Result

In this section� # will be a �nite� unicyclic graph with essential cycle C�
We assume throughout that C has m vertices x�� � � � � xm�� and that there are
edges between xi and xi�� for i � �� � � � �m� 	 and also between xm�� and x��
If � is a total ordering on V#� we set

a����� ��*
�
�u� v� � f�xi� xi��� j � � i � m� 	g 
 f�xm��� x��g

����u � v
�

b����� ��*
�
�u� v� � f�xi� xi��� j � � i � m� 	g 
 f�xm��� x��g

����u � v
�
�

and de�ne

v����� �� ja����� � b�����j�

Since �#� �� has no oriented cycles� both a����� and b����� are positive� fur�
thermore� v����� clearly does not depend on the numbering of the vertices of C�
All three numbers depend only on the quiver �#� �� and not on the particular
total order chosen� Loosely speaking� a����� counts the number of multi arrows
in C pointing in clockwise direction� and b����� counts the others� If # is equal

to the Euclidean diagram +A m�� and a �� a��Am�� ���� b �� b��Am�� ���� then we have

	��Am�� ����T � � �T
a � ���T b � ���

The following theorem is the main result of this chapter� The proof will
follow after some preparations at the end of this section�

Theorem ������ Let # be a unicyclic graph whose essential cycle C has
m vertices� Then�
�i� There exist integer polynomials f� g � Z�T � �depending only on #�� such
that for every total order � on V#�

	����� � f % g	�C����
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Moreover� f and g are products of Coxeter polynomials of certain subgraphs of
# having no essential cycles�
�ii� The number of di	erent spectral classes of # is equal to �m

�
� �
biggest

integer less than or equal to m
�
��

�iii� Let �� and �� be two total orders on V#� The following statements are
equivalent�
�a� 	������ � 	������

�b� v������ � v������

�c� there exists an admissible change of orientation r of �#� ��� such that
r�#� ��� � �#� ��� or r�#� ��� � �#� ���op�
Moreover� if # is wild� we have

������� � ������� �� v������ � v�������

Part �ii� of this theorem was proved in ��� in case # � C is an essential
cycle� We will eventually reduce the proof to this case� but our approach to
the problem is di$erent from Coleman(s�

Lemma ������ �i� a�����op � m� a����� and therefore v����� � v�����op�
�ii� Let �� and �� be orientations of #� We have v������ � v������ if and
only if there exists an admissible change of orientation r of �#� ��� such that
r�#� ��� � �#� ��� or r�#� ��� � �#� ���op� In this case� we have 	������ �
	�������

Proof� �i� is clear�
�ii� ��� By �i� and induction� it is enough to take r � rx� where x � V# is
a source of �#� ���� and show that vr������ � v������� This is clear if x 	� VC
because the edges in C are not a$ected by the application of r� If� on the other
hand� x is a vertex of C� then the orientation of those edges of C that contain
x will change� but the numbers a������� b������ and hence v������ remain the
same�
��� In the �rst case� we consider the situation when a������ � a������� Pick
x � VC arbitrary� We can �nd admissible changes of orientation s� t of �#� ���
and �#� ��� so that x is the unique source of both s�#� ��� and t�#� ����
and therefore of C� according to ������iii�� We have as������ � at������ and
it is then clear that s�#� ��� and t�#� ��� must be the same quivers� which
provides us with an admissible change of orientation r of �#� ��� such that
r�#� ��� � �#� ����
In the case a������ � b������ � a������op� using the same arguments� we can
exhibit an admissible change of orientation r of �#� ��� such that r�#� ��� �
�#� ���op�
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Proposition ������ For i � �� � � � �m��� let �C� �i� be the orientation of
C with unique source x� and a�C��i� � i� We write aij �� axixj for the number
of edges between the vertex xi and xj and set d �� a��a�� � � � a�m����m���a�m����
and 	i �� 	�C��i�� Then

	i�T �� 	j�T � � d�T j % Tm�j � T i � Tm�i��

and� in particular� the 	i are pairwise distinct for � � i � �m
�
��

Proof� We have 	i�T � � det�T �E� tM����i��%E�M����i��� since det�E�
tM����i�� � �� Observe that

�
T �E � tM����i�� % E �M����i�

�
uv
� T % � if

u � v� and ��T �*arrows�u� v�� % �*arrows�v� u��� if u 	� v�
The Leibniz formula for the determinant then yields

	i�T � � �d�T
i % Tm�i� %

X
��Mm

sgn����T % ��m����T ��a�
i
���
� j

���
�

� � � a�
i
���
��

j
���
��

where Mm is the set of all those permutations � � Sm which can be written

as a product of disjoint transpositions� � � �i
���
� j

���
� � � � � �i

���
l�
j
���
l�
�� Clearly� the

second half of this expression does not depend on i�

We have now assembled all ingredients for the proof of our main theorem�

Proof of Theorem ������ �i� Since # is a unicyclic graph� it has the
following shape�

where all Ti are trees and xi � VC � VTi� i � �� � � � � �� The statement fol�
lows then by induction on � and Theorem 
�	�	� taking into account that the
Coxeter polynomial of a graph without essential cycles does not depend on its
orientation�
�ii� follows from �iii�� below�
�iii� The equivalence of �b� and �c� was proved in Lemma ����	�ii�� while the
implication �c���a� follows from ������ii�� To see �a���b�� assume v������ 	�
v������� Using ������iii�� we �nd admissible changes of orientation r and s so
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that both r�C� ��� and s�C� ��� have unique source x�� Because of vr�C���� 	�
vs�C����� Proposition ����
 together with �i� shows that 	������ 	� 	�������
Now assume # is wild� and v������ � v������� Without loss of generality�

we can assume that a������ � b������� Since v������ � v������� there exist real
numbers �� 
 � � such that a������ � a������ % �� b������ � a������ % 
� and
thus b������ � a������ % �% 
� Write � �� �������� We then get

	�C������� � 	�C������� �
�
�
	

d��a��	
�� % �b��	
�� � �a��	
�� � �b��	
���

� �d�a��	
����� � ����� � �� � �

since � � � by ����	� Note that g��� � �� where g is the polynomial from �i��
this follows from ��
�	 and ����	�i�� Using this� we get

	��������� � 	��������� � 	��������� � g����	�C�������� 	�C�������� � ��

which� again by ����	�i�� implies � � ������� and proves the theorem�



�� CHAPTER �
 THE SPECTRAL CLASSES OF UNICYCLIC GRAPHS



Bibliography

��� Norbert A�Campo� Sur les valeurs propres de la transformation de Coxeter� Invent��
Math�� ����	
����
� ��
��

��� Maurice Auslander� Idun Reiten� and Sverre Smal�� Representation Theory of Artin

Algebras� Cambridge University Press� �����
��� I� N� Bernstein� I� M� Gelfand� and V� A� Ponomarev� Coxeter functors and Gabriel�s

theorem� Russian Math� Surveys� ��� ��
��
��� Axel Boldt� Coxetertransformationen� Diplomarbeit� Universit�at�Gesamthochschule

Paderborn� Germany� �����
��� Axel Boldt� Methods to determine Coxeter polynomials� J� Lin� Alg� Appl�� ���
��������

�����
��� Axel Boldt and Martha Takane� Some remarks about the spectral classes of unicyclic

graphs� preprint� �����
�
� A� J� Coleman� Killing and the Coxeter transormation of Kac�Moody algebras� Invent��

math� ��
��
��

� �����
��� J� A� de la Pe�na and M� Takane� Spectral properties of Coxeter transformations and

applications� Arch� Math�� ��
�������� �����
��� J� A� de la Pe�na and M� Takane� The spectral radius of the Galois covering of a �nite

graph� J� Lin� Alg� Appl�� ���
�
������ �����
���� J� A� de la Pe�na and M� Takane� Some bounds for the spectral radius of a Coxeter

transformation� Tsukuba J� Math�� �
��	
�������� �����
���� P� Dowbor and A� Skowro�nski� Galois coverings of representation�in�nite algebras� Com�

ment� Math� Helvitici� ��
������
� ���
�
���� P� Gabriel� The universal cover of a representation��nite algebra� In Representations

of algebras� proceedings of the third international conference on representations of al�

gebras� held in Puebla� Mexico� August ���� �	�
� number ��� in Lecture Notes in
Mathematics� pages ������� Springer�Verlag� �����

���� F� R� Gantmacher� The Theory of Matrices� volume �� Chelsea Publishing Company�
�����

���� Birge Huisgen Zimmermann� The geometry of uniserial representations of �nite�
dimensional algebras I� preprint� �����

���� Birge Huisgen Zimmermann� The geometry of uniserial representations of �nite�
dimensional algebras III
 �nite uniserial type� accepted for publication in Trans� Am�
Math� Soc�� �����

���� Frank Lukas� Elementare Moduln �uber wilden erblichen Algebren� PhD thesis� Uni�
versit�at�GH D�usseldorf� �����

��



�� BIBLIOGRAPHY

��
� Claus Michael Ringel� Tame algebras and integral quadratic forms� Number ���� in
Lecture Notes in Mathematics� Springer�Verlag� �����

���� Claus Michael Ringel� The spectral radius of the Coxeter transformations for a general�
ized Cartan matrix� Math� Ann�� ���� �����


